

MASTERFLEX® TUBING AND GENERAL TECHNICAL DATA

TABLE OF CONTENTS

Masterflex® Performance Data

C/L® tubing life data	172
L/S® tubing life data	173–175
I/P® tubing life data	176–178
B/T® tubing life data	179–180
Flow rates for Masterflex® pump heads	181–183
Pressure and suction lift data for Masterflex® pump heads	184–185
Pump head torque requirements	186–187
Application tips	
Dispensing applications	188–189
Pumping abrasive fluids	190
Pumping viscous fluids	190–191
Tubing selection guide for viscous fluids	191
Vacuum/suction lift data	192
General Technical Data	
Agency approvals and cord/plug guide	
	404

IP ratings, NEMA ratings, pipe thread sizes	194
ATEX and NEC classifications	
Glossary of terms	
Conversion factors	
Chemical resistance charts	. 198–206

TESTING PARAMETERS

The charts found on pages 172–180 indicate the average life of Masterflex® tubing used in our Standard-style pump heads unless otherwise noted. The tubing life is shown in hours at various motor speeds while continuously pumping water at 21°C (70°F) and 0 psig (0 bar). This data has been collected from years of testing Masterflex® peristaltic pumps. Masterflex® tubing life data is calculated from time to failure or reduction to 50% flow rate, whichever comes first.

These charts are best used as a general comparison only. It is not guaranteed that you will achieve the results shown. Generally, the life of all types of tubing is adversely affected by temperature, pump motor rpm, chemical compatibility, and pressure.

Tubing performance data presented in this catalog is the result of years of rigorous testing under actual application conditions.

TUBING SELECTION GUIDELINES

Tubing life performance is just one of many factors present in your pumping applications. The charts in this section and the information on pages 19–31 will assist you in selecting tubing for your pumping application.

Tubing life is shown in hours at various motor speeds while continuously pumping water at 21°C (70°F) and 0 psig (0 bar). Masterflex® tubing life data is calculated from time to failure or reduction to 50% flow rate, whichever comes first.

In general:

- The Norprene[®], PharMed[®] BPT, and PharmaPure[®] tubing formulations offer the best tubing life in all applications where the fluid being pumped is chemically compatible
- High-performance precision tubing has a 20 to 30% increased tubing life over Precision tubing
- High-pressure Norprene and PharMed BPT have the best life in pressure applications
- Peroxide-cured silicone tubing offers up to 40% more tubing life. Platinumcured silicone tubing offers better biocompatibility and fewer extractables. BioPharm Plus platinum-cured silicone tubing lasts up to five times longer than other platinum-cured silicone tubings and is the recommended formulation for high-accuracy dispensing applications (see pages 188–189).

Other factors to consider when determining the best tubing for your application:

- Fluid compatibility
- Fluid temperature
- System pressure
- Tubing purity

Duty cycle

Maintenance periods

- Viscosity
- Motor rpmClarity of tubing

Once tubing has been selected:

- 1. Test it in your application.
- Monitor tubing life in duty cycle, look for signs of tubing fatigue (e.g. small pinhole leaks, abrasion, etc.).
- 3. Set up maintenance schedule to anticipate tubing failure.

Monitor the time tubing is in the pump. Advance it 8 to 12 inches on a daily, weekly, monthly, or quarterly basis, depending on your experience with your maintenance schedule.

C/L° MICROBORE TUBING LIFE DATA

This graph shows average tubing life, by tubing size, of C/L[®] silicone and C/L[®] Tygon[®] while pumping water through a C/L[®] variable-speed pump 77120-series at 21°C (70°F) with 0 psig at 300 rpm.

MASTERFLEX TECHNICAL DATA

Precision and High-Performance Precision Tubing

Tubing Life

LS

- Pressure Guidelines
- Vacuum/Suction Lift

Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex® tubing to deliver accurate flow rates. Twenty-two different material formulations are available.

To order the correct tubing:

- 1. Consider all the aspects of your application: flow rate, pressure, etc.
- 2. Review the chemical compatibility data on pages 30–31, as well as specific information about individual tubing materials on pages 22–29.
- 3. Use the "Tubing Material Life Comparison" graph and table at right to select the tubing with the longest life.

If your application requires the generation of high pressure or a strong vacuum/suction lift, refer to the "Pressure Guidelines" and "Vacuum/Suction Lift" graphs at right. These graphs can assist you in determining which tubing will pressurize most rapidly or develop the strongest vacuum/suction lift in your application.

If your application requires pumping air-sensitive gases or liquids, refer to the "Gas Permeability" graph below right to choose the tubing with the lowest permeability.

If you are pumping a viscous fluid, refer to the "Tubing Selection Guide for Pumping Viscous Fluids" graph on page 191 to select the best tubing size.

FREE TUBING TEST KIT!

Our FREE Tubing Test Kit is a simple way to test your chemicals against different tubing formulations. Kit contains samples of different pump tubing formulations, formulation descriptions, a selection guide, instructions on how to test your tubing, and complete ordering information. Call today! Request item HL-00101-10.

Call or go online to request your FREE test kit today!

See pages **68–73**

for L/S® pump tubing ordering information.

TUBING MATERIAL LIFE COMPARISON

The graph above displays the average tubing life in hours of Masterflex[®] L/S[®] 16 tubing. This tubing was tested in a Masterflex[®] Standard pump head continuously pumping water at 21°C (70°F) and 0 psig (0 bar). Tubing life is calculated to time of failure or of 50% reduction in flow rate, whichever comes first. Reduce drive speeds to extend tubing life. Average tubing life for L/S[®] 16, l/P[®] 73, and B/T[®] 91 tubing at various speeds are listed in the table below.

Tubing class	L/S®	⁹ 16	I/P⁰	₽73	B/T∈	91		
Drive rpm	50	600	50	600	50	321		
Norprene [®] , PharMed®BPT, PharmaPure [®]	10,000	1000	4000	800	3000	600		
Puri-Flex™, C-Flex® ULTRA	5000	1000	3000	500	500	100		
Tygon® E-LFL	2500	600	800	400	600	200		
C-FLEX®, Silicone	500	100	400	80	250	100		
Tygon® E-Food	320	80	_	125		_		
Tygon® E-Lab	320	80	180	380	100	30		
Viton®	150	30	120	25	_	—		

L/S[°] Precision Tubing Life Characteristics

The graph below shows average tubing life vs motor rpm for selected L/S[®] tubing formulations.

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

VACUUM/SUCTION LIFT

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

GAS PERMEABILITY

To minimize permeation of gases through the tubing wall, use firm tubing. Masterflex® L/S® High-Performance precision tubing (L/S® 15, L/S® 24, L/S® 35, and L/S® 36) is less permeable than Precision tubing sizes. See pages 20–23 for tubing permeability to various gases.

LS PRECISION AND HIGH-PERFORMANCE PRECISION PUMP TUBING

Performance Data for PharmaPure[°], Norprene[°], PharMed[°] BPT, BioPharm Plus Silicone, Silicone, Tygon[°], and Viton[°] Tubing Formulations

SEE PAGES 68-73

for L/S[®] pump tubing ordering information.

L/S[®] Precision Tubing

Precision tubing (L/S® 13, L/S® 14, L/S® 16, L/S® 25, L/S® 17, and L/S® 18) is made to tight tolerances that ensure accurate flow rates and long tubing life. The graph below shows average tubing life while pumping water through an Easy-Load® II pump head at 21°C (70°F), 0 psi, 600 rpm.

L/S[®] HIGH-PERFORMANCE PRECISION TUBING

High-performance precision tubing (L/S® 15, L/S® 24, L/S® 35, and L/S® 36) improves pressure generation, suction lift, tubing life, and the ability to pump viscous fluids. The graph below shows average tubing life while pumping water through an Easy-Load® II pump head at 21°C (70°F), 0 psi, 600 rpm.

PERFORMANCE DATA FOR NORPRENE® AND PHARMED® BPT TUBING FORMULATIONS L/S[°] High-Performance Pump Head pumping water at 21°C (70°F)

MASTERFLEX

Performance Data for Silicone (Peroxide-Cured) Tubing Formulation L/S° HIGH-PERFORMANCE PUMP HEAD PUMPING WATER AT 21°C (70°F)

L/S[®] HIGH-PERFORMANCE 300 **PRECISION TUBING** 🔲 0 bar (0 psi) High-performance precision tubing (L/S® 15, L/S[®] 24, L/S[®] 35, and L/S[®] 36) improves pressure 🔲 0.7 bar (10 psi) 250 generation, suction lift, tubing life, and the ability 🛯 1.4 bar (20 psi) to pump viscous fluids. The graph at right shows average tubing life while pumping water through a High-Performance pump head at 21°C (70°F), 600 rpm. 200 Average life (hours) 150 100 50

IP PRECISION AND HIGH-PERFORMANCE PRECISION PUMP TUBING

Tubing Life

- Pressure Guidelines
- ▶ Vacuum/Suction Lift
- Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex® tubing to deliver accurate flow rates. Nineteen different material formulations are available.

To order the correct tubing:

- 1. Consider all the aspects of your application: flow rate, pressure, etc.
- 2. Review the chemical compatibility data on pages 30–31, as well as specific information about individual tubing materials on pages 22–29.
- 3. Use the "Tubing Material Life Comparison" graph and table at right to select the tubing with the longest life.

If your application requires the generation of high pressure or a strong vacuum/ suction lift, refer to the "Pressure Guidelines" and "Vacuum/ Suction Lift" graphs at right. These graphs help you determine which tubing will pressurize the most rapidly or develop the strongest vacuum/suction lift in your application.

If your application requires pumping air-sensitive gases or liquids, refer to the "Gas Permeability" graph below right to choose the tubing with the lowest permeability.

If you are pumping a viscous fluid, refer to the "Tubing Selection Guide for Pumping Viscous Fluids" graph on page 191 to select the best tubing size.

FREE TUBING TEST KIT!

Our FREE Tubing Test Kit is a simple way to test your chemicals against different tubing formulations. Kit contains samples of different pump tubing formulations, formulation descriptions, a selection guide, instructions on how to test your tubing, and complete ordering information. Call today! Request item HL-00101-10.

Call or go online to request your FREE test kit today!

Where to Order Tubing	
C/L° TUBING	34, 36
L/S [®] Tubing	68–73
I/P* TUBING	126-130
	153

TUBING MATERIAL LIFE COMPARISON

The graph above displays the average tubing life in hours of Masterflex[®] I/P[®] 73 tubing. This tubing was tested in a Masterflex[®] Standard pump head continuously pumping water at 21°C (70°F) and 0 bar (0 psig). Tubing life is calculated to time of failure or of 50% reduction in flow rate, whichever comes first. Reduce drive speeds to extend tubing life. Average tubing life for L/S[®] 16, I/P[®] 73, and B/T[®] 91 tubing at various speeds are listed in the table below.

Tubing class	L/S®	⁹ 16	I/P⁰	°73	B/T≋	91
Drive rpm	50	600	50	600	50	321
Norprene [®] , PharMed®BPT, PharmaPure [®]	10,000	1000	4000	800	3000	600
Puri-Flex™, C-Flex® ULTRA	5000	1000	3000	500	500	100
Tygon® E-LFL	2500	600	800	400	600	200
C-FLEX®, Silicone	500	100	400	80	250	100
Tygon® E-Food	320	80		125		—
Tygon® E-Lab	320	80	180	380	100	30
Viton®	150	30	120	25	_	—

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

VACUUM/SUCTION LIFT

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Gas Permeability

To minimize permeation of gases through the tubing wall, use firm tubing. Masterflex® I/P® High-Performance precision tubing (I/P® 70, I/P® 88, and I/P® 89) is less permeable than Precision tubing sizes. See pages 20–23 for tubing permeability to various gases.

TECHNICAL DATA

I/P[®] Precision Tubing Life Characteristics

Like the L/S[®] tubing sizes, I/P[®] sizes I/P[®] 26, I/P[®] 73, I/P[®] 82, I/P[®] 70, I/P[®] 88, and I/P[®] 89 offer excellent pressure generation, suction lift, tubing life, and the ability to pump viscous fluids—all at higher flow rates. This tubing is ideal for industrial applications that require flow rates up to 19 LPM (5.0 GPM).

The graph at right shows average tubing life while pumping water through a Standard pump head at 21°C (70°F).

For example, using this graph it can be determined that the expected average life of Masterflex[®] I/P[®] 73 silicone tubing at 300 rpm is about 200 hours.

Notes

Peroxide-cured silicone tubing offers up to 40% more tubing life. Platinum-cured silicone tubing offers better chemical compatibility. Biopharm Plus silicone tubing lasts up to five times longer than other platinum silicone tubings.

PEROXIDE-CURED SILICONE IN I/P° HIGH-PERFORMANCE PUMP HEAD (77600-62)

IP PRECISION AND HIGH-PERFORMANCE PRECISION PUMP TUBING

Performance Data for I/P° 73 Silicone (Peroxide-Cured) Tubing Using an I/P° Standard Head (07019-series)

BT[®] PerfectPosition[™] Pump Tubing

- Tubing Life
- Pressure Guidelines
- ▶ Vacuum/Suction Lift
- Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex® tubing to deliver accurate flow rates. Ten different material formulations are available for B/T® pumps.

To order the correct tubing:

- 1. Consider all the aspects of your application: flow rate, pressure, etc.
- Review the chemical compatibility data on pages 30–31, as well as specific information about individual tubing materials on pages 22–29.
- 3. Use the "Tubing Material Life Comparison" graph and table at right to select the tubing with the longest life.

If your application requires the generation of high pressure or a strong vacuum/ suction lift, refer to the "Pressure Guidelines" and "Vacuum/ Suction Lift" graphs at right. These graphs help you determine which tubing will pressurize the most rapidly or develop the strongest vacuum/suction lift in your application.

If your application requires pumping air-sensitive gases or liquids, refer to the "Gas Permeability" graph below right to choose the tubing with the lowest permeability.

If you are pumping a viscous fluid, refer to the "Tubing Selection Guide for Pumping Viscous Fluids" graph on page 191 to select the best tubing size.

FREE TUBING TEST KIT!

Our FREE Tubing Test Kit is a simple way to test your chemicals against different tubing formulations. Kit contains samples of different pump tubing formulations, formulation descriptions, a selection guide, instructions on how to test your tubing, and complete ordering information. Call today! Request item HL-00101-10.

Call or go online to request your FREE test kit today!

Where to Order Tubing

C/L [®] TUBING	34, 36
L/S [®] Tubing	68–73
I/P* TUBING 1	26–130
B/T [*] Tubing	153

The graph above displays the average tubing life in hours of Masterflex® B/T® 91 tubing. This tubing was tested in a Masterflex® RapidLoad® pump head continuously pumping water at 21°C (70°F) and 0 psig (0 bar). Tubing life is calculated to time of failure or of 50% reduction in flow rate, whichever comes first. Reduce drive speeds to extend tubing life. Average tubing life for L/S® 16, I/P® 73, and B/T® 91 tubing at various rpm are listed in the table below.

Tubing class	L/S®	² 16	I/P⁰	°73	B/T®91			
Drive rpm	50	600	50	600	50	321		
Norprene [®] , PharMed®BPT, PharmaPure [®]	10,000	1000	4000	800	3000	600		
Puri-Flex™, C-Flex ULTRA	5000	1000	3000	500	500	100		
Tygon® E-LFL	2500	600	800	400	600	200		
C-FLEX®, Silicone	500	100	400	80	250	100		
Tygon® E-Food	320	80	—	125	—	—		
Tygon® E-Lab	320	80	180	380	_	_		
Viton®	150	30	120	25	_	_		

Notes

Use only Masterflex[®] tubing with Masterflex[®] pumps to ensure optimal performance. Use of other tubing may void applicable warranties.

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

VACUUM/SUCTION LIFT

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Gas Permeability

To minimize permeation of gases through the tubing wall, use firm tubing. See pages 20–23 for tubing permeability to various gases.

BT[®] PerfectPosition[™] Pump Tubing

B/T° PerfectPosition[™] Tubing Life Characteristics

Like the L/S[®] and I/P[®] tubing sizes, B/T[®] sizes B/T[®] 87 and B/T[®] 91 offer all the characteristics of the smaller size tubing styles at flow ranges up to 37 LPM (9.8 GPM). The graph below shows average tubing life while pumping water through a Rapid-Load[®] pump head at 21°C (70°F).

For example, using this graph it can be determined that the expected average life of Masterflex® Norprene® Food tubing at 100 rpm is over 1000 hours.

TECHNICAL DATA

MASTERFLEX[®] TUBING PUMP FLOW PERFORMANCE

MASTERFLEX

FLOW RATES

Masterflex[®] offers a wide range of pump systems and tubing sizes. These graphs are designed to help you select a size for your application.

Pressure, in general, does not affect the flow rate of the pump head and tubing combination in water applications, unless the pressure exceeds the rating for continuous duty operation. At pressures above this rating to the maximum, the flow rates will drop off.

The exact flow rates will vary from application to application depending on the tubing material and occlusion.

MASTERFLEX[®] TUBING PUMP FLOW PERFORMANCE

mL/min (solid lines only)

TECHNICAL DATA

PUMP HEAD FLOW CURVES

TECHNICAL DATA

PUMP HEAD TORQUE REQUIREMENTS

How to Use These Tables

Use this guide to help you select the number of pump heads and tubing formulations that can be used with your drives.

To define your torque needs:

- 1. Consider the following:
- Discharge pressure (increase necessary torque)
- Tubing material (firm or soft)
- 2. Multiply by the number of pump heads you would like to use (to run two heads with the same size and formulation of tubing, multiply the value from the table by 1.9). See example at right.
- 3. See drive specifications for maximum torque limits. (Consider starting torque when selecting a drive.) The torque of the drive must exceed the starting torque value for the pump head/tubing combination. Note: starting torque is equal to approximately three times (3x) maximum running torque for drives of 75 W (1/10 hp) or greater.

- 4. Several factors influence starting torque:
- New or used tubing
- Tubing formulation
- Length of time tubing has been in closed pump head without running
- Temperature
- Pressure

EXAMPLE

Using one Easy-Load® II pump head with L/S® 15 Norprene® tubing requires a drive capable of supplying at least 81.1 N·cm (115 oz-in) of starting torque.

When using two Easy-Load® II pump heads with L/S® 15 Norprene® tubing, you will need a drive capable of supplying 154 N·cm (218 oz-in.) of starting torque.

Starting torque using the L/S° and I/P° Standard pump head

Tubing size	C-FLI Silic	EX® / one	BioP Plus s	harm ilicone	Vito	on®	Tygon®	® E-Lab	Tygon [@]	® E-LFL	Tygon® Tygon® Lubr	E-Food / ⁹ Fuel & icant	Tyg Cher	on [®] nical	Chem-D B	urance [®] io	Norprene [®] / Puri-Flex [™] / PharMed [®] BPT / C-Flex [®] ULTRA		PharmaPure		GORE® Style 100SC	
	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N⋅cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in
L/S® Pr	ecision	pump tu	bing																			
L/S 13	7.7	11	9.2	13	11.3	16	22.5	32	17	24	42.3	60	-	—	—	—	19.8	28	—	—	NA	NA
L/S 14	9.9	14	11.3	16	13.4	19	49.4	70	22.5	32	84.7	120	-	—	_	—	25.3	36	—	—	81.1	115
L/S 16	18.3	26	18.3	26	15.5	22	70.6	100	51.5	73	81.1	115	-	—	_	—	52.9	75	—	—	88.2	125
L/S 17	26.9	38	33.9	48	45.9	65	105.8	150	77.6	75	127	180	_	—	—	—	116.4	165	—	—	226	320
L/S 18	42.3	60	38.8	55	60	85	91.7	130	70.6	90	180.6	256	—	_	—		169.3	240	—	_	305	432
L/S® Hi	gh-perfo	rmance	Precisi	on pump	o tubing																	
L/S 15	24	34	35.3	50	21.2	30	105.8	150	70.6	115	225.8	320	-	—	—	—	91.7	130	—	—	91.7	130
L/S 24	42.3	60	98.8	140	64.9	92	127	180	98.8	140	316.1	448	-	—	_	—	135.4	192	—	—	120	170
L/S 35	41.7	59	50.8	72	113	160	151	214	113	160	304.8	432	_	—	_		152.4	216	—	—	124.2	176
L/S 36	49.4	70	77.6	110	147	208	140	198	113	160	—	_	—	—	—		169.3	240	—	—	NA	NA
I/P® Pre	ecision p	ump tul	oing																			
I/P 73	90.4	128	124.2	176	137.6	195	225.8	320	147	208	548	776	—	—	—	—	214.5	304	—	—	226	320
I/P 82	77.6	110	203.4	288	NA	NA	338.7	480	135.4	192	678	960	—			_	225.8	320	—	—	452	640

Starting torque using L/S° and I/P° Easy-Load° and Easy-Load° II pump heads

Tubing size	C-FLI Silic	EX® / :one	BioP Plus si	harm licone	Vito	on®	Tygon®	® E-Lab	Tygon [@]	® E-LFL	Tygon® Tygon® Lubr	E-Food/ ⁹ Fuel & icant	Tyg Cher	Tygon [®] Chem-Dur Chemical Bio		Tygon® Ch Chemical		Tygon® Chemical		Tygon® Chemical		Tygon® Chemical		ygon [®] Chem-Di hemical B		Chem-Durance [®] Bio		ene® / lex™ / d [®] BPT / PULTRA	PharmaPure®		GORE® Style 100SC	
	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N⋅cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N⋅cm	oz-in	N∙cm	oz-in	N∙cm	oz-in										
L/S [®] Pr	ecision	pump tu	bing																													
L/S 13	7.7	11	9.2	13	12	17	21.2	30	12	17	56.4	80	17	24	21.2	30	14.1	20	20.5	29	NA	NA										
L/S 14	11.3	16	12.7	18	16.3	23	31.8	45	19	27	63.5	90	35.3	50	35.3	50	28.2	40	27.5	39	24.7	35										
L/S 16	11.3	16	13.4	19	24.7	35	38.8	55	42.4	60	63.5	90	45.9	65	56.4	80	31.8	45	63.5	90	63.5	90										
L/S 25	21.2	30	45.9	65	21.2	30	60	85	35.3	50	52.9	75	63.5	90	84.7	120	35.3	50	50.8	72	91.7	130										
L/S 17	24.7	35	36	51	35.3	50	56.4	80	61.4	87	84.7	120	45.9	65	84.7	120	84.7	120	70.6	100	42.3	60										
L/S 18	35.3	50	38.8	55	52.9	75	70.6	100	35.3	50	84.7	120	52.9	75	113	160	84.7	120	91.7	130	70.6	100										
L/S® Hi	gh-perfo	rmance	Precisi	on pump	o tubing																											
L/S 15	45.9	65	49.4	70	45.9	65	88.2	125	77.6	110	197.6	280	—	—	113	160	81.1	115	77.6	110	70.6	100										
L/S 24	38.8	55	49.4	70	74.1	105	95.3	135	70.6	100	208.2	295	192	272	119.9	170	84.7	120	113	160	49.4	70										
L/S 35	56.4	80	60	85	77.6	110	98.8	140	70.6	100	192	272	—	—	124.1	176	124.2	176	—	—	91.7	130										
L/S 36	49.4	70	77.6	110	70.6	100	113	160	105.8	150	214.5	304	—	—	135.3	192	109.4	155	—	—	NA	NA										
I/P [®] Pre	ecision p	oump tul	bing																													
I/P 26	113	160	113	160	-	—	203.2	288	147	208	248.3	352	327.4	464	—	—	180.6	256	226	320	127	180										
I/P 73	169.3	240	169.3	240	192	272	316.1	448	180.6	256	481.9	683	282.2	400	304.6	432	316.1	448	248.3	352	192	272										
I/P 82	180.6	256	192	272	NA	NA	304.8	432	225.8	320	474.1	672	395.1	560	429.3	608	282.2	400	338.7	480	338.7	480										

NA = Not available or applicable

TECHNICAL DATA

How to Use This Table

Use this guide to help you select the number of pump heads and tubing formulations that can be used with your drives.

To define your torque needs:

- 1. Consider the following:
- Discharge pressure (increase necessary torque)
- Tubing material (firm or soft)
- See drive specifications for maximum torque limits. (Consider starting torque when selecting a drive.) The torque of the drive must exceed the starting torque value for the pump head/tubing combination. Note: starting torque is equal to approximately three times (3x) maximum running torque.
- 3. Several factors influence starting torque:
- New or used tubing
- Tubing formulation
- Length of time tubing has been
- in closed pump head without running Temperature
- Pressure

EXAMPLE

Using one High-Performance pump head with L/S® 15 Norprene® tubing requires a drive capable of supplying at least 105.8 N·cm (150 oz-in) of starting torque.

Starting torque using the L/S° and I/P° High-Performance pump heads

Masterflex

C-FLI Silic	EX® / cone	BioP Plus si	harm licone	Vito	on®	Tygon [®] E-Lab Tygo		Tygon [®] E-LFL		Tygon [®] E-Food/ Tygon [®] Fuel & Lubricant		Tygon® Chemical		Chem-Durance® Bio		Norprene [®] / Puri-Flex [™] / PharMed [®] BPT / C-Flex [®] ULTRA		PharmaPure®		GORE [®] Style 100SC	
N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N∙cm	oz-in	N⋅cm	oz-in	N⋅cm	oz-in	N∙cm	oz-in	N⋅cm	oz-in	N⋅cm	oz-in	N∙cm	oz-in	N∙cm	oz-in
-press	ure pun	np tubin	g																		
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	428.9	608	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	496.7	704	NA	NA	NA	NA
-perfor	mance	Precisi	on pum	p tubin	g																
35.3	50	56.4	80	70.6	100	127	180	84.7	120	271	384	—	—	—		105.8	150	—	—	123.5	175
35.3	50	63.5	90	91.7	130	120	170	77.6	110	282.2	400	—	—	—	—	120	170	—	_	180.5	256
52.9	75	64.9	92	84.7	120	158.1	224	98.8	140	—	—	—	—	—	—	124.2	176	—	—	225.8	320
52.9	75	77.6	110	105.8	150	146.7	208	112.9	160	_	_	—	—	—	—	135.4	192	—		NA	NA
-perfor	mance	Precisi	on pum	p tubing	3																
226	320	248.3	352	NA	NA	338.7	480	316.1	448	—	—	—	—	485.8	688	496.7	704	—	_	237.1	336
180.6	256	237.1	336	NA	NA	-	_	259.6	368	—	—	—	—	575.3	816	428.9	608	—	—	338.7	480
158.1	224	180.6	256	NA	NA	361.2	432	259.6	368	—	—	—	—	564.5	800	451.6	640	—	—	406.4	576
	C-FLI Silic Press NA NA -perfor 35.3 35.3 52.9 52.9 52.9 52.9 180.6 158.1	C-FLEX [®] / Silicone N·cm oz-in pressure pur NA NA NA NA S5.3 50 52.9 75 52.9 75 peformance 320 180.6 256 158.1 224	C-FLEX® / Silicone BioPl Plus si N-cm oz-in N-cm -pressure pump tubin NA NA NA NA NA -performance Precisi 35.3 50 56.4 35.3 50 63.5 52.9 75 64.9 52.9 75 248.3 180.6 256 237.1 158.1 224 180.6	BioPharm N·cm oz-in N·cm oz-in pressure pump tubing NA NA NA NA NA NA NA NA NA NA NA stat S5.3 50 56.4 80 35.3 50 63.5 90 52.9 75 64.9 92 52.9 75 64.9 92 52.9 110 performance Precision pum 226 320 248.3 352 180.6 256 237.1 336 158.1 224 180.6 256	C-FLEX® / Silicone BioPharm Plus silicone Vita N-cm oz-in N-cm oz-in N-cm -pressure pump tubing - NA NA NA NA NA NA NA NA NA NA -preformance Precision pump tubing - - - 35.3 50 56.4 80 70.6 - 35.3 50 63.5 90 91.7 -	C-FLEX® / Silicone BioPharm Plus silicone Viton® N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in pressure pump tubing NA NA NA NA NA NA NA NA NA NA NA NA NA S3 50 56.4 80 70.6 100 35.3 50 63.5 90 91.7 130 52.9 75 64.9 92 84.7 120 52.9 75 64.3 352 NA NA performace Precision pump tubing 105.8 150 performace 248.3 352 NA NA 180.6 256 237.1 336 NA NA 158.1 224 180.6 256 NA NA	C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® N-cm oz-in N-cm oz-in N-cm oz-in N-cm -pressure pump tubing - NA NA NA NA NA NA NA NA NA NA NA NA NA NA So So 56.4 80 70.6 100 127 35.3 50 56.4 80 70.6 100 127 35.3 50 66.35 90 91.7 130 120 52.9 75 64.9 92 84.7 120 158.1 50.9 77.6 110 105.8 150 146.7 performance Precision pump tubing 226 320 248.3 352 NA NA 338.7 180.6 256 237.1 336 NA NA - 158.1 224 180.6 256 <t< td=""><td>C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in -pressure purp tubing NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -performance Precision purp tubing table na na na 35.3 50 56.4 80 70.6 100 127 180 35.3 50 63.5 90 91.7 130 120 170 52.9 75 64.9 92 84.7 120 158.1 224 performance Precision purp tubing table 146.7 208 performance 100 125 NA NA AA — — 180.6 256<td>C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® N-cm oz-in oz-in N-cm oz-in N-cm oz-in Sisin Sisi</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® E-LFL Tygon® Tygon® Diversity Tygon® Tygon® LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>C-FLEX® / SI BioPharm Plus silicone Viton® Viton® Tygon® E-Lab Tygon® E-Lab Tygon® E-Lbd Tygon® Fuel & Lubricant Tygon® E-mice Tygon® Fuel & Chem.cal Chem.cal Chem.bio Display Norm Plus silicone N-cm oz-in N-cm oz-in</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>C-FLEX® / Silver BioPharm Plus silver Vitor® Tygon® E-Lab Tygon® E-Lb Tygon® E-Food/Tygon® Fuel & Lubricant Tygon® Lel & Lubricant</td><td>C-FLEX® / SI BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FCH Tygon® Fuel & Lubicant Tygon® Fuel & Chemila Chemila BioPhare Norprene® / Puri-Flex^M / N-Cm Pharma@® PT / O.Flex^M N·cm oz-in N·cm <</td><td>C-FLEX® / SII: BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FAL Tygon® E-Fod/ Tygon® Fuel & Lubricant Tygon® E-LFL Tygon® E-Fod/ Lubricant Tygon® Chem-Bio BioPhare Norme® / PharMed® BPT / C-Flex® ULTRA PharmaPure® Style N-cm oz-in N</td></td></t<>	C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in N-cm oz-in -pressure purp tubing NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -performance Precision purp tubing table na na na 35.3 50 56.4 80 70.6 100 127 180 35.3 50 63.5 90 91.7 130 120 170 52.9 75 64.9 92 84.7 120 158.1 224 performance Precision purp tubing table 146.7 208 performance 100 125 NA NA AA — — 180.6 256 <td>C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® N-cm oz-in oz-in N-cm oz-in N-cm oz-in Sisin Sisi</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® E-LFL Tygon® Tygon® Diversity Tygon® Tygon® LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>C-FLEX® / SI BioPharm Plus silicone Viton® Viton® Tygon® E-Lab Tygon® E-Lab Tygon® E-Lbd Tygon® Fuel & Lubricant Tygon® E-mice Tygon® Fuel & Chem.cal Chem.cal Chem.bio Display Norm Plus silicone N-cm oz-in N-cm oz-in</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>C-FLEX® / Silver BioPharm Plus silver Vitor® Tygon® E-Lab Tygon® E-Lb Tygon® E-Food/Tygon® Fuel & Lubricant Tygon® Lel & Lubricant</td> <td>C-FLEX® / SI BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FCH Tygon® Fuel & Lubicant Tygon® Fuel & Chemila Chemila BioPhare Norprene® / Puri-Flex^M / N-Cm Pharma@® PT / O.Flex^M N·cm oz-in N·cm <</td> <td>C-FLEX® / SII: BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FAL Tygon® E-Fod/ Tygon® Fuel & Lubricant Tygon® E-LFL Tygon® E-Fod/ Lubricant Tygon® Chem-Bio BioPhare Norme® / PharMed® BPT / C-Flex® ULTRA PharmaPure® Style N-cm oz-in N</td>	C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® N-cm oz-in oz-in N-cm oz-in N-cm oz-in Sisin Sisi	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C-FLEX® / Silicone BioPharm Plus silicone Viton® Tygon® E-Lab Tygon® E-LFL Tygon® Tygon® Diversity Tygon® Tygon® LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon® Diversity Tygon® Diversity LFL Tygon® Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@ Diversity Tygon@	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C-FLEX® / SI BioPharm Plus silicone Viton® Viton® Tygon® E-Lab Tygon® E-Lab Tygon® E-Lbd Tygon® Fuel & Lubricant Tygon® E-mice Tygon® Fuel & Chem.cal Chem.cal Chem.bio Display Norm Plus silicone N-cm oz-in N-cm oz-in	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C-FLEX® / Silver BioPharm Plus silver Vitor® Tygon® E-Lab Tygon® E-Lb Tygon® E-Food/Tygon® Fuel & Lubricant Tygon® Lel & Lubricant	C-FLEX® / SI BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FCH Tygon® Fuel & Lubicant Tygon® Fuel & Chemila Chemila BioPhare Norprene® / Puri-Flex ^M / N-Cm Pharma@® PT / O.Flex ^M N·cm oz-in N·cm <	C-FLEX® / SII: BioPharm Plus Viton® Tygon® E-Lab Tygon® E-FAL Tygon® E-Fod/ Tygon® Fuel & Lubricant Tygon® E-LFL Tygon® E-Fod/ Lubricant Tygon® Chem-Bio BioPhare Norme® / PharMed® BPT / C-Flex® ULTRA PharmaPure® Style N-cm oz-in N

[†]Can only be used and started on a 100 rpm drive

Catalog number

Discharge pressure

Start

Average Peak [‡]Starting torque based on notch #1.

5.2 bar (75 psi)

28.2 N·cm (40 oz-in)

53.8 N·cm (75 oz-in)

NA = Not available or applicable — Not

3.5 bar (50 psi)

52.9 N·cm (75 oz-in)

123.8 N·cm (175 oz-in)

HL-07090-42

0 bar (0 psi)

127.4 N·cm (180 oz-in)

24.5 N·cm (35 oz-in)

63.5 N·cm (90 oz-in)

Not recommended

DRIVE TORQUE REQUIREMENTS TO OBTAIN 19 LPM WITH I/P° HIGH-PERFORMANCE PUMP HEADS

TORQUE SPECIFICATIONS FOR L/S° PTFE-DIAPHRAGM PUMP HEAD

0 bar (0 psi)

56.8 N·cm (80 oz-in)

21.2 N·cm (30 oz-in)

31.8 N·cm (45 oz-in)

HL-07090-62

Choose your drive based on desired flow rate, pressure in your application, and type of tubing used. For example, if you need 19 LPM at 1.4 bar and are using Norprene® tubing, you need a drive that supplies 0.25 hp (07583-50).

Some flow rate/pressure combinations are not possible with all drives. High-performance pump head is designed exclusively for use with High-performance Precision tubing.

High-Performance pump head 77600-62. Order on pages 126–127.

TIPS FOR DISPENSING APPLICATIONS

Masterflex[®] digital pump drives are ideal for laboratory and process dispensing applications. Accuracies of $\pm 0.5\%$ and better are achievable with careful pump system selection and by following some simple guidelines.

DISPENSING BENEFITS OF MASTERFLEX® TUBING PUMPS

- Variety of available tubing formulations ensures chemical and biocompatibility with your fluid
- A continuous piece of tubing from inlet to outlet minimizes obstructions and interruptions in the fluid path
- Gentle pumping action is ideal for shear-sensitive fluids and fluids containing proteins and other large molecules
- Wide range of flow rates provides flexibility in volume and time of dispense
- Simple and reliable calibration ensures accuracy and repeatability
- Nonsiphoning; prevents backflow and enhances dispensing accuracy
- Multichannel capability with synchronous or independently controlled channels

PUMP HEAD SELECTION

Masterflex[®] Standard, Easy-Load[®]-series, and High-performance pump heads all deliver excellent results in dispensing applications.

Multichannel Options

Three types of pump head adapt easily to multichannel applications: stackable single-channel heads, multichannel heads, and cartridge heads. Multichannel and cartridge heads provide for the maximum number of tubing channels within a relatively small space.

Stackable Single-Channel Pump Heads

You can add or remove stackable single-channel heads as needed for different applications. Stackable pump heads are therefore popular for applications that require the flexibility to frequently reconfigure the pump design. Stackable heads are preferred for larger tubing sizes, and when the application involves high suction lift and/or discharge pressure.

Two or four stacked heads can typically be mounted on a drive depending on the drive's speed range and horsepower. The dual channel Masterflex® L/S® Easy-Load® II pump head can give you up to 8 channels with four heads stacked on a single drive.

Multichannel Pump Heads

Multichannel heads are a second option for multiple channel applications. These heads combine many of the best features of both cartridge heads and stacked single-channel heads.

These heads offer relatively low pulsation flow from two, four, or eight channels with no cartridges. They are also stackable for up to 32 channels depending on tubing size and formulation and drive power. Between-channel flow is synchronous with no adjustment of occlusion. These features give multichannel heads the configuration flexibility of stacked single-channel heads, as well as the synchronous flow and channel capacity of cartridge heads.

Masterflex® L/S® multichannel pump heads are available for microbore tubing and for Masterflex® L/S® tubing sizes.

REDUCED PULSATION

Minimal pulsation is essential to ensuring accuracy in peristaltic dispensing. Pulsation causes variations in flow rate and splashing and frothing in the receiving vessel. Combining the split-channel tubing configuration with the offset rollers of two stacked Easy-Load® II pump heads merges a pulse from one channel with a trough from the other. The reduced pulsation is measured at the Channel Channel outlet and shown in the graph at right. Time →

Cartridge Pump Heads

Cartridge pump heads accept a predetermined maximum number of channels—any number of these channels can be used, up to the capability of the head and the drive. Masterflex[®] $L/S^{®}$ cartridge heads can be mounted on most Masterflex[®] $L/S^{®}$ drives. Up to 12 individual channels mount on a single head with flow rates as low as 0.0005 mL/min per channel.

Channels

A + B

Cartridge pumps have long rollers that provide synchronous fluid delivery between the cartridges. These pump heads also have a higher number of rollers than single-channel heads, which results in lower pulsation flow and higher accuracy at low volumes and low flow rates. These pumps are recommended for low volume/low flow rate fluid transfer applications.

Cartridge heads with adjustable occlusion offer the highest between-channel accuracy of all pump head types. Fine adjustments to the occlusion in individual channels can effectively compensate for any minor variations in tubing dimensions that lead to slight variations in flow.

Accuracy

Cartridge and multichannel pump heads are popular for accurate sampling, dispensing, and metering of fluids. The synchronous rollers provide coordinated fluid delivery between each channel in the pump head. Multichannel heads deliver between-channel flow accuracies in the range of 1.5 to 2% (depending on tubing formulation). With adjustable occlusion, cartridge pump heads can deliver flow accuracies of <1% between channels. Precise dispensing and metering require this high level of performance and accuracy.

FREE TECHNICAL APPLICATIONS ASSISTANCE

Our team of scientific experts is trained to answer your most challenging questions because they are experienced in a wide variety of backgrounds, including biology, chemistry, biochemical engineering, and physics.

For answers, call our APPLICATION SPECIALISTS CHALLENGE: A pharmaceutical manufacturer needed to dispense volumes of 300 mL in 15 seconds or less repeating three times per minute; and 20 mL in 2 seconds or less repeating 20 times per minute. The desired accuracy target for both applications was $\pm 1.5\%$. The efficiency of simultaneously pumping multiple channels was critical.

OUR SOLUTION: The manufacturer now uses a Masterflex® L/S® digital drive 07522-20 (see pages 88–89) with an L/S four-channel pump head 07536-04 (see pages 54–55). Size L/S 15 two-stop BioPharm Plus silicone tubing (96116-15) met the smaller flow requirement; while size L/S 35 two-stop BioPharm Plus silicone tubing (96116-35) met the larger flow requirement. BioPharm Plus silicone tubing is recommended for high-accuracy dispensing applications due to its exceptional flow stability over time. Careful calibration of the drive and the synchronous multichannel flow capability of the pump head enabled the manufacturer to meet the accuracy target.

TUBING SELECTION

Chemical Compatibility

Refer to the chemical compatibility charts specific to pump tubing on pages 30–31. These charts are compiled from actual test data in peristaltic pumps.

Temperature Sensitivity

The friction caused by the rollers moving over the tubing will generate measurable heat. This heat generation can affect the mechanical properties of the tubing and result in slight variations in performance. PVC-based formulations show the most pronounced temperature sensitivity. Due to minimal temperature sensitivity, recommended formulations for dispensing applications are BioPharm Plus silicone, PharMed® BPT, PharmaPure®, Norprene®, and GORE® Style 100SC. BioPharm Plus tubing has characteristics that make it ideal for dispensing: superior shape memory throughout its life in the pump, little cross-sectional distortion over time, and minimal variation in flow over time. This superior shape memory is sufficient to offset the need for an initial break-in period.

Size/Flow Range

Size your tubing so that you are operating at the middle of the tubing's flow range (volume per unit time). This will give you maximum flexibility to make adjustments without approaching either the upper or lower limit of the tubing flow range.

Loading the Tubing in the Pump Head

You will realize optimal performance, and best pumping life, if you are careful not to impart any twist or torsion to the tubing when loading. Tubing has a natural curvature—follow that curvature when laying the tubing across rollers or onto occlusion bed.

Tubing Break-In Period

Peristaltic pump tubing shows a distinct increase in flow stability after the first few minutes of pumping. During this break-in period the tubing adapts to the repeated compression of the rollers. For tubing in the L/S[®] sizes the break-in period is 10 to 15 minutes; for I/P[®] tubing sizes 12 to 18 minutes.

Tubing Dimensions and Tolerances

Masterflex drives, pump heads, and pump tubing have all been co-designed, and are continually being monitored and refined, to deliver best performance when used together in complete pump systems. The exact dimensions and manufacturing tolerances of the tubing have direct impacts on maximizing tubing life and dispensing accuracy.

The flow rate for a given size of tubing is derived from the volume pumped per each revolution of the rollers. Volume pumped per revolution is directly proportional to the inside diameter of the tubing. Even slight variations in inside diameter can have significant impact on flow accuracy. Variations in the outside diameter of the tubing can result in the tubing not being properly retained in the pump head and being either over- or under-occluded. These problems can also impact accuracy as well as tubing life. Masterflex pump tubing is manufactured to very precise tolerances and monitored and tested to verify those tolerances. To realize the maximum accuracy and repeatability from your Masterflex pump drive, we strongly recommend that you use only Masterflex pump tubing.

Regulatory Classifications for Tubing

Several Masterflex tubing formulations comply with industry-critical regulations. Relevant classifications include those specified by the United States Pharmacopoeia (USP), European Pharmacopoeia (EP), US Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA) and National Sanitation Foundation (NSF).

Upon request, Cole-Parmer will provide you with a certificate validating that the tubing is in compliance with a particular regulation. This documentation will ensure that you can demonstrate compliance with your individual protocols.

DRIVE SELECTION

Masterflex systems offer digital drives with features designed for dispensing applications. Drives are available in console, modular, and modular washdown configurations.

Dispense Features

- Dispense by volume—lets you program the volume to be dispensed for either single or multiple cycles
- Dispense by time—allows you to run the pump at a programmed flow rate for a specified period of time
- Copy—lets you program the number of dispense cycles or repeats.
- Dispense interval—an adjustable time delay between cycles, gives you ample time to reposition the tubing or filling accessory or to switch target vessels

- Batch count—this feature allows you to program a defined number of batches; as the pump operates, the number of batches completed is displayed alongside the programmed total
- Cumulative volume—displays the total volume dispensed over multiple cycles
- Dispense by weight—requires an RS-232 or balance-compatible interface (available on the L/S 07551-00 and -10 Computer-Compatible drive and on the L/S Digi-Staltic[®] modular dispensing pump)
- Antidrip feature—briefly reverses the rollers at the end of the dispense cycle, further ensuring accuracy (available on the L/S Digi-Staltic modular dispensing pump)

Remote Control

Remote control options enable easy integration of pumps into automated systems and also enhance user comfort in repetitive dispensing applications. Controllable functions include start/stop, reverse, prime, dispense or copy, and speed. Drives are available with analog (DC voltage, current, or contact closure) and/or digital (RS-232, USB) interfaces. Control accessories include foot switches and dispensing wands for momentary start/stop and a full-function handheld remote controller for selected drives.

Calibration

Proper calibration is essential to dispensing accuracy. Follow the directions in the drive operating manual and perform no more than two or three successive calibrations. Masterflex® digital dispensing drives store one calibration value per tubing size and will hold that value in memory until the pump is recalibrated for that particular tubing size. Calibration conditions should be identical to the actual dispensing conditions. Backpressure, fluid viscosity, and temperature should not vary from calibration throughout dispensing. Remember to break in the tubing for the described period (see above) before calibration.

PUMPING ABRASIVE FLUIDS

Masterflex[®] tubing pumps are well suited for pumping abrasive slurries for several reasons. The peristaltic pumping action is gentle on the fluid, reducing tubing wear. The only part of the pump the fluid comes in contact with is a smooth piece of tubing; there are no fittings or valves that particles may clog. Abrasive materials shorten the life of any pump, but with peristaltic pumps the tubing is quickly and inexpensively replaced.

Follow these suggestions to get the maximum performance from your peristaltic tubing pump:

- Choose abrasion-resistant tubing. Norprene® and PharMed® BPT have good abrasion resistance. Tygon® is fair with abrasives, while C-FLEX®, silicone, and Viton® are moderately resistant to wear from abrasive materials.
- 2. Use an adjustable-occlusion pump head. The standard occlusion for all Masterflex® fixed-occlusion pump heads is shown in Figure A. Abrasive materials, especially hard particles, are pressed into the tubing wall and can cause a great amount of wear. Using an adjustable-occlusion pump head allows you to reduce the amount that the tubing is squeezed (Figure A); the result is less wear on the tubing. By increasing the occlusion to prime the tubing and then reducing it to pump, you'll get maximum performance from your pump with the least amount of wear on the tubing.
- **3. Select a larger tubing size.** This will reduce the rate that particles come into contact with the tubing wall. Soft particles should have an ID less than 25% of the ID of the tubing. Hard particles should be even smaller in relation to the ID of the tubing (less than 5%). Maintaining these ratios will reduce the rate that the tubing is being worn from the inside (Figure B).
- 4. Slow down the speed of the drive. This will cause a more gentle pumping action and increase the life of your tubing. Since many slurries are also viscous, slowing down the drive speed will also increase the efficiency of the pump.

VISCOUS FLUID BEHAVIOR

Effective viscosity can be better understood by looking at the behavior of viscous fluids at different shear rates. There are a number of types of viscous fluid behavior.

Shear Rate (Velocity)

TUBING SELECTION FOR PUMPING VISCOUS FLUIDS

MASTERFLEX

TO MAXIMIZE THE PUMPING EFFICIENCY OF VISCOUS FLUIDS,

FOLLOW THESE STEPS:

- 1. Slow down the speed of your pump. Increasing the speed beyond a certain point will not have any effect on flow rate. The maximum efficient speed of the pump decreases as viscosity increases and tubing size decreases.
- 2. Choose a larger size tubing than required to pump water. The table below will help you choose the best size.
- 3. Choose a firm tubing such as Chem-Durance[®] Bio, GORE[®] Style 100SC and Style 500, Norprene[®], PharmaPure[®], PharMed[®] BPT, and or Tygon[®] E-LFL. Performance will be better because the tubing returns to its original shape quickly after pump head occlusion. For L/S[®], I/P[®], and B/T[®]

sizes, choose high-performance precision tubing—the thicker wall also returns more quickly to its original shape than precision tubing. The quicker return allows liquid to be pulled into the tubing with greater force.

- Select a tubing with a smooth bore. A smooth bore will decrease frictional forces. BioPharm, BioPharm Plus, Tygon[®] E-Lab, Tygon[®] E-LFL, or silicone formulations are good choices.
- Decrease the viscosity of your fluid. Heat your fluid if possible; viscosity usually decreases with temperature.

TUBING SELECTION GUIDE FOR PUMPING VISCOUS FLUIDS

How to use this graph:

Example: You have an 800 centipoise fluid that you wish to pump and you need to determine what the minimum tubing size you need to pump this viscous fluid. Look at the Viscosity axis on the left hand side of the graph and find 800 centipoise. Follow this over until it meets the line. At the intersection of the line and 800 centipoise, follow this down to the Minimum Tube Size axis to see which tubing range it falls within. In this scenario the 800 centipoise falls in the range of the L/S 16 tubing size. Therefore, the minimum tube size needed to pump 800 centipoise is L/S size 16. All viscosities below 800 centipoise can be used with an L/S size 16 tube as well.

Considerations: All viscosity test data was obtained using firm tubing materials such as Norprene®, PharMed® BPT, Viton®, and Tygon® because these formulations perform the best in viscous fluid applications. Tests were performed with fluids at 21°C (70°F) and 0 bar (0 psig) of back pressure. This graph is best used as a general guideline only, and is not a guarantee that you will achieve the results shown.

FREE TECHNICAL APPLICATIONS ASSISTANCE

Our team of scientific experts is trained to answer your most challenging questions because they are experienced in a wide variety of backgrounds, including biology, chemistry, biochemical engineering, and physics.

For answers, call our APPLICATION SPECIALISTS

CHALLENGE: An adhesives manufacturer needed to dose different types and different volumes of viscous rapid-drying glue. Pumps with valves and moving parts were prone to getting stuck or would have to be cleaned very thoroughly at the end of a session. In some cases, pumps were damaged beyond recovery.

OUR SOLUTION: We recommended L/S[®] 24 high-performance precision (thicker-walled) platinum-cured silicone tubing. Silicone is the only tubing that can be used more than once. The rapid-drying glue can actually be stored in the silicone tubing for several days if the outlet of the tubing is closed.

The manufacturer now uses an L/S® standard digital drive 07522-20 (see pages 88–89) and Easy-Load® II pump head 77200-62 (see pages 44–45) to dose 20 and 50 mL of rapid-drying glue with a viscosity of approximately 1200 cp. Oversizing the tubing allows the pump to run at speeds under 200 rpm; facilitating pumping of the viscous glue.

MASTERFLEX[®] VACUUM/SUCTION LIFT DATA

Masterflex[®] pumps offer excellent vacuum/suction lift. To achieve maximum lift, choose your tubing size and material carefully. The lower the ID-to-wall ratio, the better the vacuum performance. The stiffer the wall material, the better the vacuum level. In general, Norprene[®]/PharMed[®] BPT materials enable you to generate the highest level of vacuum before collapsing, and give you the longest life in a fluidless application; adjustable occlusion pump heads generate the best level of vacuum.

The easy-to-use graph and table below can help you determine the speed required to achieve the vacuum level required. All of the vacuum tests were conducted with either the Standard, High-Performance, or Rapid-Load® pump heads, depending on tubing size. The rated vacuum was generated after running for two minutes.

VACUUM/SUCTION LIFT SPECIFICATIONS

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

EXAMPLE 1

To generate a 13 in. Hg vacuum (almost 50%) using U/S^{\oplus} 13 silicone tubing, the motor speed must be at least 5 rpm. The pump system will generate the vacuum in about 30 to 60 seconds, depending on the length of the tubing system that needs to be evacuated.

EXAMPLE 2

To develop a suction lift of 8.8 m (29 ft) H_{20} with L/S^{\odot} 15 Norprene $^{\odot}$ tubing, the motor speed needs to be >50 rpm. At 50 rpm it will take approximately 2 to 3 minutes to prime the pump.

	Masterflex® Precision and High-Performance Precision pump tubing															
	C	-FLEX®/Silicon	ne		Туд	jon®/Tygon® E∙	-LFL		Norpr	ene®/PharMec	I® BPT			Viton®		
Tubing size	Max vac. mm (in.) Ha	Suction m (ft) H20	Pu spe (rp	mp eed im)	Max vac. mm (in.) Ha	Suction m (ft) H20	Pu spe (rp	mp eed m)	Max vac. mm (in.) Ha	Suction m (ft) H20	Pu spe (rp	mp eed im)	Max vac. mm (in.) Ha	Suction m (ft) H20	Pu spe (rp	mp eed m)
	3		Α	В	,		Α	В	5		Α	В	,		Α	В
L/S [®] 13	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	50
L/S [®] 14	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	50
L/S [®] 16	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	20	560 (24)	7.6 (25)	5	50
L/S [®] 25	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	25	50
L/S [®] 17	313 (12)	4.3 (14)	10	150	313 (12)	4.9 (16)	5	50	403 (16)	5.5 (18)	10	200	403 (16)	5.5 (18)	25	200
L/S [®] 18	313 (12)	4.3 (14)	10	150	313 (12)	4.9 (16)	10	100	403 (16)	5.5 (18)	10	200	403 (16)	5.5 (18)	25	200
L/S [®] 15	560 (24)	7.6 (25)	10	75	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	5	50	560 (24)	7.6 (25)	10	100
L/S [®] 24	560 (24)	7.6 (25)	10	150	560 (24)	7.6 (25)	10	75	560 (24)	7.6 (25)	10	100	560 (24)	7.6 (25)	10	200
L/S [®] 35	493 (19)	6.7 (22)	50	300	515 (20)	7.3 (24)	50	300	560 (24)	7.6 (25)	50	300	560 (24)	7.6 (25)	50	300
L/S [®] 36	493 (19)	6.7 (22)	50	300	515 (20)	7.3 (24)	50	300	560 (24)	7.6 (25)	50	500	560 (24)	7.6 (25)	50	300
I/P [®] 26	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	515 (20)	7.3 (24)	10	50
I/P [®] 73	560 (24)	7.6 (25)	25	50	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	515 (20)	7.3 (24)	25	50
I/P [®] 82	515 (20)	7.0 (23)	50	200	493 (19)	7.0 (23)	10	50	560 (24)	7.6 (25)	50	200	_	_	_	_
I/P [®] 70	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	_	_	_	_
I/P [®] 88	470 (18)	6.4 (21)	25	50	560 (24)	7.6 (25)	10	50	560 (24)	7.6 (25)	10	50	_	_	_	_
I/P [®] 89	314 (12)	4.3 (14)	50	200	314 (12)	4.9 (16)	10	50	515 (20)	7.0 (23)	10	50	_	_	—	_
B/T [®] 87	538 (22)	7.3 (24)	20	40	515 (20)	7.0 (23)	20	40	560 (24)	7.6 (25)	20	40	_	_	—	_
B/T [®] 91	470 (18)	6.4 (21)	20	40	515 (20)	7.0 (23)	20	40	560 (24)	7.6 (25)	20	40	_	_	_	_

MASTERFLEX TECHNICAL DATA

ELECTRICAL DATA / REGULATORY AGENCIES AND APPROVALS

RECEPTACLE INFORMATION

REGULATORY AGENCIES AND APPROVALS

3-A: 3-A Sanitary Standards, Inc. (3A SSI) has developed standards and practices for sanitary and hygienic equipment and systems used in the dairy, food processing, and pharmaceutical industries. Products carrying the 3-A designation adhere to standards governing the design, fabrication, installation and operation of equipment and machinery.

ASCII: American Standard Code for Information Interchange is a method of encoding characters into 7 or 8 binary bits (typically 7 bits plus an 8th bit for parity).

ANSI: The American National Standards Institute is a private organization that coordinates the creation of voluntary standards in a number of fields including engineering, electronics, and construction.

ASTM: The American Society for Testing and Materials is a scientific and technical organization that develops material standards and testing methods.

DIN: The Deutsche Industrie Normen is a German organization that develops standards from physical quantities engineering to material engineering.

ISO 9000 series: The ISO 9000 series of process standards and guidelines address issues concerning product quality. The standards guide manufacturers on the development, production, installation, and inspection of products to ensure consistent quality. Manufacturers must pass a rigorous audit to achieve certification/registration.

FDA: Food & Drug Administration is responsible for approving food and drugs for widespread use. Definitions for proper use are found in a series of regulations published annually under Government Regulations CFR 21.

FM: FM Global (formerly Factory Mutual) is an international leader in third-party testing, certification, and approval of commercial and industrial products. Product types include electrical, fire protection, fire detection, and hazardous location equipment. FM approval indicates conformance to relevant national and international standards.

NEMA: The National Electrical Manufacturers Association is a trade association of electrical equipment manufacturers that develops and publishes many manufacturing standards.

NIST: The National Institute of Standards and Technology is a U.S. government agency that provides standard reference materials and calibration services. NIST-certified instruments have been calibrated at NIST or through an official NIST program or collaboration. NIST-traceable instruments have been factory or lab calibrated, by a non-NIST or non-official NIST program/collaboration, where an **unbroken chain of comparisons to stated references** has been established. Non-NIST or non-official NIST programs/collaborations are responsible for establishing the traceability of their own results or values to those of NIST or other stated references.

NSF: The National Sanitation Foundation is a nongovernment agency focused on health-related standards for products and services. Certification indicates products suited for applications such as food handling/processing, plumbing, and water distribution.

NTEP: National Type Evaluation Program (NTEP) is an evaluation program administered by the National Conference on Weights and Measures (NCWM). Weighing and measuring devices are examined by NTEP to verify that operating characteristics and features comply with the applicable

The icons below represent agencies that give various product approvals. Look for them next to products in this catalog.

Products with this symbol meet ISO quality standards for design, development, and servicing capabilities.

Products with this symbol are listed by Underwriters Laboratories, Inc. Samples of these products have been evaluated by UL and meet the applicable UL standards for safety.

Products with this symbol bear the UL Listing Mark for Canada.

Products with this symbol bear the UL Listing Mark for Canada and the U.S.

Products with this symbol are recognized under the Recognized Component Program of Underwriters Laboratories, Inc.

Products with this symbol are listed by ETL Testing Laboratories, Inc. and meet applicable safety standards within the U.S. and Canada.

This symbol assures you that the product meets certain safety standards and/or performance criteria as set by the Canadian Standards Association.

Products with this symbol conform to certain standards and are eligible to be placed on the market in the European Community.

Products with this symbol have been certified to Cenelec (European Electrotechnical Standardization) and/or IEC (International Electrotechnical Commission) for use in hazardous areas.

CERTIFIED SUPPLIER

(VL)

R

(ETI)

GP

(E

Products with this symbol conform to ATEX Directive 94/9/EC—a European directive applied to equipment intended for use in potentially explosive atmospheres.

Products with this mark meet certain requirements as reported by FM Global.

NSF

Products with this symbol have been tested and certified by NSF International. NSF is a nongovernmental agency that focuses on health-related standards for products and services.

Products with this symbol have been approved for use with dairy products. It is recognized and used by industries that require sanitary products.

Products with this symbol meet specific standards related to official EPA test protocols.

Products with this symbol meet specific standards of the American Water Works Association; applicable to equipment used in the delivery, treatment, and testing of drinking water.

Products with this symbol measure temperatures based on the ITS-90 temperature scale.

Products with this symbol comply with standards of the National Type Evaluation Program applicable to the performance characteristics of weighing and measuring devices.

requirements of NIST Handbook 44, Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices.

OEM: Products used by Original Equipment Manufacturers in the design of equipment.

OSHA: The Occupational Safety and Health Administration oversees and regulates workplace health and safety.

REACH: a European Community Regulation on chemicals and their safe use (EC 1907/2006). It deals with the Registration, Evaluation, Authorization and Restriction of Chemical substances. **RoHS:** The Restriction of Hazardous Substances directive aims to restrict certain dangerous substances commonly used in electrical and electronic equipment.

UL: Underwriters Laboratories, Inc. is concerned with safety of personnel and property. UL listing indicates compliance with UL safety standards for electrical, mechanical, and fire hazards.

USP Class VI: Safety evaluation standards of the U.S. Pharmacopoeia/National Formulary for biocompatibility with plastics.

ENCLOSURE RATINGS / STANDARD PIPE THREAD FITTINGS

INGRESS PROTECTION (IP) RATINGS

The IP rating system classifies the degrees of protection from solid objects and liquids afforded by electrical equipment and enclosures. The system is recognized in most countries and is set out in a number of British and European standards.

These include: Classification of Degrees of Protection Provided by Enclosures, BS (British Standards) 5490:1977; IEC (International Electrotechnical Commission) 529:1976.

Specifications for Degrees of Protection of Enclosures of Switchgear and Control Gear for voltages up to and including 1000 VAC and 1200 VDC, BS 5420:1977; and IEC 144:1963.

First Digit

Protection against solid objects

- 0 no protection
- 1 protected against solid objects over 50 mm (e.g. accidental touch by hands)
- 2 protected against solid objects over 12 mm (e.g. fingers)
- 3 protected against solid objects over 2.5 mm (tools)
- 4 protected against solid objects over 1 mm (fine tools/wires)
- 5 protected against dust-limited ingress (no harmful deposits)
- 6 totally protected against dust

Second Digit

Protection against liquids

- 0 no protection
- 1 protected against vertically falling drops of water (e.g. condensation)
- 2 protected against direct sprays of water up to 15° from the vertical
- 3 protected against spraying water up to 60° from the vertical
- 4 protected against water sprayed from all directions-limited ingress permitted
- 5 protected against low-pressure jets of water from all directions—limited ingress permitted
- 6 protected against strong jets of water from all directions—limited ingress permitted (e.g. for use on ship decks)
- 7 protected against the effects of immersion between 15 cm and 1 m

NEMA/IEC ENCLOSURE RATINGS

Conversion of NEMA type classifications to IEC classification designation (IP ratings). Note: NEMA standards meet or exceed IEC standards; therefore, the conversion does not work in the opposite direction.

NEMA enclosure type no.	NEMA definition	IEC enclosure class
1	General-purpose. Protects against dust, light, and indirect splashing but is not dust-tight; primarily prevents contact with live parts; used indoors and under normal atmospheric conditions.	IP10
2	Drip-tight. Similar to Type 1 but with addition of drip shields; used where condensation may be severe (as in cooling rooms and laundries).	IP11
3 and 3S	Weather-resistant. Protects against weather hazards such as rain and sleet; used outdoors on ship docks, in construction work, and in tunnels and subways.	IP54
3R	Intended for outdoor use. Provides a degree of protection against falling rain and ice formation. Meets rod entry, rain, external icing, and rust-resistance design tests.	IP14
4 and 4X	Watertight (weatherproof). Must exclude at least 65 GPM of water from 1-in. nozzle delivered from a distance not less than 10 ft for 5 minutes. Used outdoors on ship docks, in dairies, and in breweries.	IP56
5	Dust-tight. Provided with gaskets or equivalent to exclude dust; used in steel mills and cement plants.	IP52
6 and 6P	Submersible. Design depends on specified conditions of pressure and time; submersible in water; used in quarries, mines, and manholes.	IP67
7	Hazardous. For indoor use in Class I, Groups A, B, C, and D environments as defined in the NEC.	—
8	Hazardous. For indoor and outdoor use in locations classified as Class I, Groups A, B, C, and D as defined in the NEC.	—
9	Hazardous. For indoor and outdoor use in locations classified as Class II, Groups E, F, or G as defined in the NEC.	—
10	MSHA. Meets the requirements of the Mine Safety and Health Administration, 30 CFR Part 18 (1978).	—
11	General-purpose. Protects against the corrosive effects of liquids and gases. Meets drip and corrosion-resistance tests.	—
12 and 12K	General-purpose. Intended for indoor use, provides some protection against dust, falling dirt, and dripping noncorrosive liquids. Meets drip, dust, and rust resistance tests.	IP52
13	General-purpose. Primarily used to provide protection against dust, spraying of water, oil, and noncorrosive coolants. Meets oil exclusion and rust resistance design tests.	IP54

STANDARD PIPE THREAD FITTINGS

The illustrations are actual size. If you have any question as to the size of fitting you require, simply compare the threads per inch, the diameter and length of the threading, and the taper of the threading of your existing fittings to these drawings.

11/2" NPT(M)

1/4" NPT(M)

194

½" NPT(M)

3/4" NPT(M)

www.coleparmer.com

US Toll-free: 800-323-4340 Canada 800-363-5900 · India 91-22-6139-4444 · UK 0500-345-300

%" NPT(M)

Outside the US: 847-549-7600

MASTERFLEX

TECHNICAL DATA

ELECTRICAL DATA / HAZARDOUS AREA CLASSIFICATIONS

ATEX DIRECTIVE 94/9/EC

Since 1st July 2003 the ATEX Directive 94/9/EC has required equipment and protective systems that are for use in potentially explosive atmospheres, to conform to specific safety standards. The directive is applicable to all countries within the EU.

Equipment Marking

The following is a guide only to the identification markings on ATEX marked equipment and protective systems.

Determining the suitability of ATEX marked equipment and safety systems is the responsibility of the user.

Methods of Protection—Table 2

EU Directive 94/9/EC from July 1, 2003 — Table 1 **EEx** IIC **T5** d

marking:

Method of protection Marking Protection principle Electrical equipment for gases, vapours and mists according to CENELEC Flameproof enclosure EEx d Contain the explosion and prevent flame propagation Increased safety EEx e No arcs, sparks, or hot surfaces EEx n Nonsparking No arcs, sparks, or hot surfaces EEx i Limit the energy of the spark and surface temperature Intrinsic safety Oil immersion EEx o Keep the ignition source constantly immersed in oil Pressurised enclosure EEx p A protective gas contains the ignition source Fine ground filling surrounds the ignition source and therefore, an arc from Sand filling EEx q inside of the housing cannot ignite the surrounding combustible atmosphere

Classification of Gases and Dusts per CENELEC/IEC—Table 3

Gas group			Temperature	e class		
das group	T1	T2	Т3	Τ4	T 5	Т6
I	Methane	—	—	—	_	—
IIA	Acetone Methane Ethane Propane	Ethyl alcohol Cyclohexane <i>n</i> -butane <i>n</i> -butyl alcohol	Diesel fuel Aircraft fuel Fuel oil n-hexane Heptane	Acetaldehyde	_	_
IIB	Coal (lighting) gas Acrylonitrile	Ethylene Ethylene oxide	Ethylene glycol Hydrogen sulphide	Ethyl methyl ether	—	_
IIC	Hydrogen	Ethine (Acetylene)	_	_	—	Carbon disulphide

Temperature Classification—Table 4

CENELEC/IEC	Max surface	Commonto	Example equipment marking:
(Group II) Class	temperature	Comments	
T1	450°C (842°F)		
T2	300°C (572°F)	Temperature relates to	
T3	200°C (392°F)	all parts of equipment that can	ATEX Category 2 (gas) equipment
T4	135°C (275°F)	come into contact with the	designated for installation in Zone 1.
T5	100°C (212°F)	potentially explosive atmosphere	Protection by flameproof enclosure,
T6	85°C (185°F)		suitable for hydrogen atmosphere with
Ту	Maximum surface	Assessment of equipment temperature	maximum equipment surface temperature
1.	temperature not defined	class is the responsibility of the user	

Equipment Groups I and II: Categories M1, M2, 1, 2, and 3-Table 5

G Mines and/or con	roup l :: methane nbustible dusts		Above groun gas/air o	Gro d: potentially or dust/air mi	y explosive xtures, mist	atmospheres o or vapours	or
Cat	egory M	Categ	gory 1	Categ	ory 2	Cat	egory 3
1	2	G (Gas) (Zone 0)	D (Dust) (Zone 20)	G (Gas) (Zone 1)	D (Dust) (Zone 21)	G (Gas) (Zone 2)	D (Dust) (Zone 22)
Equipment which guarantees a very high degree of safety. Operation guaranteed in case of errors.	Equipment which guarantees a very high degree of safety. Switching off possible if potentially explosive atmosphere occurs.	For equipn guarante high degre Intended for potentially atmospheres constantly to	nent which ees a very e of safety. cases where v explosive s are often or be expected.	For equipm guaran high degree Intended where a p explosive a is to be e	eent which tees a e of safety. for cases otentially tmosphere xpected.	For equip guarantee degree of s for cases wh explosive a be expected then, only fo	oment which as a standard afety. Intended ere a potentially tmosphere can only rarely, and or a short time.
Very high protection level	High protection level	Very high pro	otection level	High prote	ction level	N	ormal

National Electrical Code (NEC) Hazardous Area Classifications

IIuzuiuu	as Area olassineations
Class I:	Areas where flammable gases or vapors may be present in the air in sufficient quantities to be explosive
Group A:	Atmospheres containing acetylene
Group B:	Atmospheres such as butadiene, ethylene oxide, propylene oxide, acrolein, or hydrogen (or gases or vapors equivalent in hazard to hydrogen, such as manufactured gas)
Group C:	Atmospheres such as cyclopropane, ethyl ether, or ethylene (or gas or vapors of equivalent hazard)
Group D:	Atmospheres such as acetone, alcohol, ammonia, benzene, benzol, butane, gasoline, hexane, lacquer solvent vapors, naphtha, natural gas, propane, or gas or vapors of equivalent hazard
CLASS II:	Areas made hazardous by the presence of combustible dust
Group E:	 Atmospheres containing combustible 1) metal dusts, regardless of resistivity 2) dust of similarly hazardous characteristics having a resistivity less than 100 kΩ-cm 3) electrically conductive dusts
Group F:	Atmospheres containing combustible
	 carbon black, charcoal, or coke dusts having more than 8% total volatile material dusts so sensitized that they present an explosion hazard, and dusts having a resistivity greater than 100 Ω-cm but less than or equal to 1 x 10^g Ω-cm
Group G:	 Atmospheres containing combustible 1) dust having resistivity equal to or greater than 100 kΩ-cm 2) electrically nonconductive dusts
CLASS III:	Areas made hazardous by the presence of easily ignitable fibers or dust, but which are not likely to be suspended in the air in sufficient quantities to ignite
Division 1:	Atmospheres where hazardous concentrations exist continuously, intermittently, or periodically under normal operating conditions
Division 2:	Atmospheres where hazardous concentrations exist only in case of accidental rupture or breakdown of equipment
EXPLOSION-F	ROOF: Enclosures or housings are
designed t	o withstand internal explosions
and prever	it the spread of fire to the outside.

INTRINSICALLY SAFE: Systems in which electrical energy in the circuits is not present at levels that would ignite a flammable mixture of a gas and air.

GLOSSARY

Accuracy: The degree of precision. Usually expressed, in terms of error, as a percentage of the specified value, or as a percentage of a range.

A/D: Analog-to-digital conversion. The process changes an analog signal into a digital value representative of the magnitude of the signal at the moment of conversion.

Absolute pressure (psia): The total force per unit area exerted by a fluid. It is the sum of atmospheric and gauge pressures.

Alternating current (AC): Current that reverses polarity at a uniform frequency.

Atmospheric pressure: The force exerted per unit area by the weight of the atmosphere.

Automatic temperature compensation (ATC): meters with ATC receive a continuous signal from a temperature sensor in a solution and then automatically standardize the displayed value to 25°C.

Baud rate: A unit of measure for data transmission speed. It represents the number of signal elements (typically bits) transmitted per second. Typical baud rates are 600, 1200, 2400, 4800, 9600, 19.2K, 35.4K, and 115.2K.

Buffer: In chemistry terms, a solution that maintains a set pH value regardless of added acids or bases; often used for calibration. In computer terms, a device used to store data temporarily, normally to compensate for differences in speed between system components (for example, a highspeed data acquisition board and main memory).

Byte: Eight related bits of information processed as a unit. Eight bits equal one byte.

Cavitation: Process in which small bubbles are formed and implode violently. This results in aggressive cleaning action in ultrasonic cleaners.

Contacts: Elements used to mechanically make or break an electric circuit.

Continuous duty: A device able to operate continuously with no off or rest periods.

Convection: Transmission of energy or mass in a medium by movement of the medium itself.

Density: The mass of a given substance per unit volume, often expressed as pounds/ft³ or grams/cm³.

Direct current (DC): A current with a constant polarity.

Double-pole, double-throw (DPDT): A term used to describe a switch or relay output contact form (form C). Two separate switches that operate simultaneously, each with a normally open and normally closed contact and a common connection.

Explosion-proof (XPRF) motor: A totally enclosed motor that will withstand an explosion of a specific vapor or gas within its housing, or will prevent sparks or flashes generated within its housing from igniting surrounding vapor or gas.

Factory calibration: The tuning or altering of a control device by the manufacturer to bring it into specification.

Gain: Ratio of output voltage, current, or power to input voltage, current, or power.

Gauge pressure (psig): A measure of the force per area exerted by a fluid using atmospheric pressure as a zero reference.

Impedance: The opposition in an electric circuit to the flow of an alternating current. It consists of ohmic resistance, inductive reactance, and capacitive reactance.

Inductive load: Electrical devices made of wound or coiled wire. Current passing through the coil creates a magnetic field that in turn produces mechanical work.

Intrinsically safe motor: A motor designed to prevent sparks generated within its housing from igniting surrounding vapor or gas, but is not rated "explosion-proof."

Ion-selective electrode (ISE): An electrode that is sensitive to specific ions in a solution.

LIMS (Laboratory Information Management System): A system that manages operations of a testing laboratory.

Linearity: The degree to which performance or response approaches the condition of being linear. Expressed in percent.

Normally closed (NC): A switch in which the contacts are closed (contacting) without any external force acting upon it.

Normally open (NO): A switch in which the contacts are open (separated) when no external forces act upon the switch.

On/off control: A simple control system in which the device being controlled is either full on or full off, with no intermediate operating positions.

Open drip-proof (ODP) motor: An open motor with ventilator openings that prevent liquids and solids, dropped from an angle of 0° to 15° from vertical, from interfering with its operation.

Parallel transmission: The transmission of data bits over different lines, usually simultaneously; as opposed to serial transmission.

pH: An indication of the acidity or alkalinity of a solution. Units range from 0 (most acidic), to 7 (neutral), to 14 (most alkaline).

PID control (proportional, integral, derivative): Control in which the control signal is a linear combination of the error signal, its integral, and its derivative.

Pressure: Force exerted per unit area.

Proportional control: Control in which the amount of corrective action is proportional to the amount of error.

Range: The limits within which a device or circuit operates or the distance over which a transmitter operates reliably.

RS-232: A standard computer interface used primarily to connect PCs and microprocessors with instruments, such as pH meters.

Serial transmission: Sending one bit at a time on a single transmission line.

Series (Universal) motor: A non-induction type motor utilized for small equipment. Speed will decrease as load increases.

Shaded-pole motor: A low-starting torque motor that depends on induced current to create the magnetic field necessary to start the motor.

Shunt: A conductor joining two points in an electrical circuit to form a parallel path. All or some portion of the current may pass through the shunt.

Single-phase motor: Any motor energized by a single alternation voltage.

Single-pole, double-throw (SPDT): A switch that in one position completes one of two circuits. In the second position the switch completes a second circuit and breaks the first circuit.

Single-pole, single-throw (SPST): A switch that will open or complete a circuit.

Solid-state: Any element that controls current without moving parts, heated filaments, or vacuum gaps.

Standard operating conditions, standard temperature and pressure (STP): Defined temperature and pressure to which all values are referenced for comparison. Generally 760 mm Hg (1 atm), 25°C.

Stop bit: A signal following a character or block that prepares the receiving device to receive the next character or block.

Temperature compensation: Correction for the influence of temperature on a measurement.

Tolerance: The maximum allowable deviation from a specified standard, as the range of variation permitted, expressed in actual values or more often as a percentage of the nominal value.

Totally enclosed (TE) motor: Motors that prevent the free flow of air from the inside of the motor enclosure to the outside.

Totally enclosed, nonventilated (TENV) motor: A motor in a totally enclosed housing that is not equipped with an external cooling device.

Totally enclosed, fan-cooled (TEFC) motor: A motor in a totally enclosed housing that is equipped with a separate external blower.

Transducer: Any device that generates an electrical signal from real-world physical measurements.

Transmitter: A device that translates the lowlevel output of a sensor or transducer to a higher level signal suitable for transmission to a site where it can be further processed.

Three-phase motor: A relatively inexpensive, self-starting motor (no starting winding or capacitor); can start heavy loads. The motor requires a three-phase AC power supply.

Universal Serial Bus (USB): A serial bus standard to connect devices to a host computer. Conveniences include plug-and-play and lowpower transmission.

Viscosity: The resistance of a fluid to flow when subjected to shear stress.

To go from

Multiply by

To get

CONVERSION FACTORS

To go from	Multiply by	To get
atm	33.89854	ft H ₂ 0
atm	760	mm [•] Hg
atm	1.033227	kg/cm²
atm	14.705	psi
atm	1.01325	bar
atm	101.325	kPa
atm	101325	Pa
bar	14.50377	psi
bar	0.9869233	atm
bar	100,000	Ра
BIU	//8.196	lb-ft
BTU/min	0.01/5/	KVV
BTU/nr DTU/min	0.210158	ID-TT/SEC
BT0/IIIII	0.023373	11p
cm	0.3937008	inch
CIII	0.03280840	ieet
cm ³	0.03381402	oz (fluid)
cm ³	0.001	liter
cc/min	1	mL/min
cc/min	0.016	GPH
deg C	(1.8 x °C) + 32	deg F
deg C	deg °C + 273.2	К
deg F	0.555 (°F – 32)	deg C
К	K – 273.2	deg C
dyne	0.00102	gm
dyne	0.000002248	lb (force)
dyne	0.00003597	oz
dyne-cm	0.00102	gm-cm
dyne-cm	0.00000007376	lb-ft
dyne-cm	0.000014	oz-in
dyne/cm	0.1	ra
feet (ft)	30.48	cm
ft	0.3048	m
ft H ₂ 0	0.4335	psi
ft H ₂ 0	0.0295	atm
ft H ₂ 0	0.8826	in Hg
ft ³	7.480519	gal
ft ³	0.028316847	m ³
ft³/hr	0.4719474	LPM
ft³/hr	471.9474	mL/min
ft³/min	0.0283157	m³/min
tt°/min	28.3157	LPM
gallon (gal)	128	oz (fluid)
gal	3.785412	liter
gal	8.337	lb H ₂ 0
gal	0.1337	ft ³
gal	230.9	in ³
gal	0.003785	m ³
gal (IIVIP)	1.20095	gal (US)
gai (05)	0.83207	gai (IIVIP)
GPH	63.1	mL/min
GPM	3.785412	LPM m ³ /br
UPIVI	0.22/124/	111°/NF

gram (gm) 0.002205 lb gm 0.03527 oz (avd) gm (force) 980.7 dyne 980.7 gm-cm dyne-cm gm-cm 0.0000723 lb-ft gm-cm 0.01389 oz-in 0.000867 lb-in gm-cm gm-cm 0.000098 N-m 0.22757 oz-in² gm-cm² horsepower (hp) 0.7457 kW hp 42.44 BTU/min 1.01387 hp (metric) hp 396,000 lb-in/min hp hp (metric) 0.9862 hp 2.54 cm inch (in) 25.40 mm in in³ 0.004329 gal in³ in³ 0.01639 liter 16.39 mL in Hg 1.1329 ft H₂0 in Hg 0.4926 psi 25.64 in Hg mm Hg in Hg 3386 Ра 0.0009478 BTU joule 0.73756 joule lb-ft 2.2046 lb kg 13.89 kg-cm oz-in kg-m 7.246 lb-ft kg/cm² 14.22334 psi kg/cm² 0.9678 atm kW 56.92 BTU/min kW 1.341 hp kPa 0.009867841 atm kPa 0.14504 psi 444822 lb (pound) dyne lb 453.597 gm lb 0.453597 kg 16 lb οz lb (force) 4.44822 Ν lbs H₂0 0.1199 gal lb-in 1152.5 gm-cm lb-in 0.1129 N-m lb-in/min 0.000002525 hp lb-ft 0.001285 BTU 13,560,000 lb-ft dyne-cm lb-ft 1.3558 N-m lb-ft 192 oz-in lb-ft 0.1383 kg-m lb-ft 13825 gm-cm lb-ft/sec 1.355 watt lb-ft/sec 4.625 BTU/hr lb-ft/min 0.022589 watt 1000 liter (L) cm³ 0.2642 liter gal m³ liter 0.001 in³ liter 61.0237 LPM 0.2642 GPM LPM 2.11888 ft³/hr ft³/min LPM 0.035316

To go from	Multiply by	To get
mL mL mL/min mL/min mL/min mL/min	0.061 0.033818 0.0158 0.0333818 1 0.00211	in ³ oz (fluid) GPH oz/min cc/min ft ³ /hr
mm mm Hg mm Hg mm Hg	0.03937 0.03937 0.001315 133.3	in in Hg atm Pa
meter (m) m ³ m ³ m ³ /min m ³ /hr	3.2808 1000 35.316 264.2 35.316 4.405	feet liter ft ³ gal ft ³ /min GPM
Newton (N) N-m N-m N-m Newton/m ²	0.2248 141.612 10197.16 0.737562 8.850 1	lb (force) oz-in gm-cm lb-ft lb-in Pa
ounce (oz) oz oz (force) oz (fluid) oz (fluid) oz (fluid)	28.3495 0.0625 27801.39 0.001943 29.57 0.007813 29.57	gm Ib dyne slug mL gal cm ³
oz-in oz-in oz-in oz-in oz-in ² oz/min	0.072 72.007 70620 0.00521 0.007061 4.3941 29.57	kg-cm gm-cm dyne-cm Ib-ft N-m gm-cm ² mL/min
Pascal (Pa) Pa Pa Pa Pa Pa Pa	10 1 0.0000099 0.00001 0.0002953 0.000145 0.0075	dyne/cm ² Newton/m ² atm bar in Hg psi mm Hg
psi psi psi psi psi psi psi	6.895 0.068046 0.0689 2.30666 2.036 0.070307 6894.76	kPa atm bar ft H ₂ 0 in Hg kg/cm ² Pa
slug	514.785	OZ
watt (W) W	0.737562 44.2537	lb-ft/sec lb-ft/min

MORE online

For additional technical data

including more conversions,

viscosity values, wire gauge sizes, conductivity values, electrical diagrams, and more.

Masterflex.com/TechInfo

CHEMICAL RESISTANCE CHARTS

WARNING

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

CHEMICAL COMPATIBILITY DATABASE

To find the safest materials for your application, search this database by chemical, material, or compatibility level.

Scan the QR code at right with your mobile device to get to our chemical compatibility database.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- **A** No effect
- B Minor effect
- C Moderate effect
- $\mathbf{D} \mathbf{Severe} \ \mathbf{effect};$
- not recommended — No data available

							P	lasti	cs										E	last	omer	s								M	etals					No	nmet	tals
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel [®]	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon®	Kel-F*	Natural rubber	Neoprene	Santoprene [®]	Silicone	Tygon [®] (R-3603)	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C*	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Acetaldehyde	D	Α	D	A	-	С	С	-	A	C1	A1	Α	Α	D	D	D	Α	С	Α	С	С	-	A	D	D	Α	Α	В	A	A	-	C	-	Α	Α	Α	-	-
Acetamide	-	A	-	A	-	Α	A	-	A	D	A ¹	Α	A	D	C	Α	Α	В	A	D	В	-	В	D	В	В	A	A	-	D	-	D	-	-	-	A	-	-
Acetate Solvent	-	-	C	A	-	A	A	D	A	-	B1	A	A	D	A	C	A	C	A ¹	C	D	-	C	D	D	A	A	A	A	C	A	D	A	A	A	A	-	-
Acetic Acid 20%					-	A	A ²	A	D I		N N	A	A	D	U A	U	A	C A	A	B		A		D	B	D	B	B			A		B	A	A	A	A	_
Acetic Acid 20%				R1	-	A		A	n	R1	A	A	A	r C		C C	A	A C	A	r r	C A	r A	B	D	B	D	R	B					B	A	A	A	A	A
Acetic Acid Glacial	D	D	B1	B1	Δ1	A	D	Â	в	B1	Δ1	A	Â	D	A1	č	B	č	A2	č	Ď	Ď	в	D	D	Ċ	Ă	В	-	C C	Â		B	A	A	Â	Â	Â
Acetic Acid Vapors	1	-	-	D	-	_	-	_	D	-	_	_	A	_	A	Ă	Ā	Ă	_	Ā	A	-	Ā	_	A	D	D	В	-	-	-	1 -	B	A	A	A		
Acetic Anhydride	C1	D	D	C	C	С	D	D	A ¹	D	B1	Α	Α	D	B1	D	В	Α	Α	С	A	D	c	D	D	В	Α	A1	D	С	В	D	В	Α	Α	A	A	-
Acetone, 50% water	D	-	-	-	-	-	-	D	-	-	Α	Α	A	D	Α	D	-	Α	-	D	D	-	A ²	-	D	В	В	В	A	Α	-	-	-	Α	Α	Α	-	-
Acetone	D	A	D	B1	В	D	B1	D	A	D	Α	Α	A	D	D	D	Α	С	Α	С	С	A	D	D	D	Α	Α	A	A	A	A	A	A	Α	Α	Α	<u>A</u>	_
Acetyl Bromide	-	-	-	-	-	-	D	-	D	-	-	_	A	D	-	-	-	-	_	-	-	-	-	D	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Acetyl Chloride (dry)	יין				_	-	D I	ן ש	2	L L	۵ ۸1	A	A			D		B	A	B	B	A		۵ ۸1	Å	A	A							A	-	_	-	_
			Δ			Δ	Δ			n	Δ1	_	Δ	B1		n	n	c	_	B1	c		n	n.	ñ	Δ1	Δ1	B1			Δ1			B		B		_
Adipic Acid	-	_	A ²	Â	_	A	Â	_	2	_	B ²	_	Â	A ²	A ²	C	A ²	_	_	A1	č	_	_	D	A ²	A ¹	A ²	Ā	2	-	12	Â	D	_	в	Å2	_	_
Alcohols: Amyl	A ¹	Α	A ²	B ²	A1	Α	B ²	С	A ¹	B1	B1	Α	Α	A ²	Α	В	Α	Α	Α	В	Α	Α	D	D	A	Α	Α	В	A1	A	Α	В	A	Α	В	A	A	-
Benzyl	D	Α	Α	C	-	В	D	D	B1	-	Α	Α	A	D	Α	D	В	C	Α	D	C	D	-	D	Α	В	В	В	-	Α	Α	В	В	Α	Α	-	Α	-
Butyl		Α	A ²	A	-	-	A	A	D	A ²	A	А	A	A ²	A	С	В	Α	-	Α	C	В	B	A ²	Α	Α	Α	В	A	A	A	B	Α	Α	A	A	Α	-
Diacetone	-	A	-		-	A	Bi	A	A	-	B ²	-	A	BI	A	D	A	D	BI	D	D	-	D	BI	D	A	A		A	A	A	A	-	A	A	A	-	-
ELIIVI	р.	A'	Р		-	А		A'	A'	D-	A	_	A	Δ2	-		A	B	А	Å	Å	A		د ۸2	r A	A	A				A		A	A		A	A	_
Isobutyl	в	Δ		Â		Δ			Â	_	Δ1	_	Δ2	Δ1		B	Δ	Δ	_	Δ	Â	_	Ā	Δ1	Ă	Δ	Â	B			Â	12		Â	B	Δ		_
Isopropyl	-	A	С	A	-	A	A ²	A ¹	D	A ²	A ²	_	A ²	A ¹	-	В	A	A	-	A	В	-	A	D	A	В	В	B	-	A	A	Ă	В	A	B	A	A	Α
Methyl	D	Α	A	B1	В	Α	A1	A	B1	B1	A ²	Α	A	A1	Α	Α	Α	A	A1	A	A	A	A	A1	С	Α	Α	A1	A	A	Α	A	B1	Α	В	A	A	Α
Octyl	A1	Α	B1	A	-	-	A	A	A	-	-	-	-	-	-	В	Α	В	-	В	В	-	В	-	В	А	Α	Α	-	Α	Α	A	A	C	Α	-	-	-
Propyl	BI	A	A ²	A	-	-	A ²	A2	D	-	A	Α	A	A	A ²	A	A	Α	-	A	A	A	A	A	A	A	A	A	A	A	A	I A	A	A	A	A	<u> </u>	-
Allyl Chloride	טן	-		A	-	A	-	ן ט	-	-	A	_	A	D	A	D	D	-	-	ן ט	D	-		-	A ³	NR ²	A		-	-	-	-	-		-	A	-	-
Aluminum Acetate (Saturateu)	Δ	_			- -	Δ	B2	Δ	B1	Δ1	Δ	Δ	Δ	Δ2		Δ	Δ	B	Δ	Δ	Δ		B	Δ2		B	R				B1				B	Δ	Δ	_
Aluminum Chloride 20%	-	С	A	A1	-	A	B ²	A	D	A ¹	A	A	A	A ¹	A	A	A	B	A	A	A	-	B	A ¹	A	D	C1	D	D	D	C1	D	-	A	B	A	A	В
Aluminum Fluoride	Α	С	Α	B1	-	Α	A ²	A ¹	A1	-	Α	Α	Α	A ²	Α	Α	Α	Α	-	В	Α	-	В	A ²	Α	D	D	B1	-		С	D	D	В	Α	Α	-	В
Aluminum Hydroxide	В	A	A	B1	-	Α	A ²	A	A ¹	B1	A	-	A	A ²	A	A	A	A ²	A1	D	A	-	-	A ²	A	A1	C1	B1	В	С	A1	A	D	В	B1	A	-	-
Aluminum Nitrate	-	Bi	A	A²	-	-	A ²	-	A	A	A ²	-	A	B ₂	A2	A ²	A ²	A ²	A	A	A1	-	Bil	B ₂	A ²	А	A	טן	-	-	-	-	-	-	A	A ²	-	-
Aluminum Prospirate Aluminum Potassium Sulfate 10%			B			^	 2	 2		Δ1	^	_	_	 2	B	A	A	A	_	Å	Å		Å	 ^2	Å	^	Δ				_		 2		_	_		_
Aluminum Potassium Sulfate 10%	_	č	B	A1	_	Â	Â2	A2	D	A2	Â	_	Â	Â2	-	Â	Â	Â	Â	Â	Â	_	Â	A2	Â	D	B ²	č	12	_	B		B	č	Â	Â		_
Aluminum Sulfate	A ²	B1	A ²	A ²	B1	Α	A ²	Α	A ²	Α	Α	Α	Α	A ²	Α	Α	Α	Α	Α	Α	Α	A	Α	A ²	Α	В	B ²	B1	B1	В	В	D	A ²	В	Α	Α	Α	-
Alums	-	-	Α	A	D	-	A	-	A	-	A	-	A	-	-	Α	A ¹	-	-	Α	В	-	A ¹	-	Α	-	Α	A	-	-	Α	D	C	В	Α	-	-	-
Amines	-				A	B	C1		D	D	B2	B A1	A ²	D	-	D	В	D	A	B	B	-	В		D	A	A		ישן		B		-	В	B	A	_	-
Ammonia Nitrate	_		B		_	A _				_		Α' Δ	A	B		A C	Α	D	A _	_	C A	_	_	B		A	A		_					A _	- U	A _	A	_
Ammonia, anhydrous	D	D	A ¹	A	D	Α	B ²	B ¹	A ¹	D	A	A ¹	A	A ²	A	B	A	D	Α	D	A	-	С	B	D	A	A ²	A ¹	D	D	A	A	D	В	С	Α	-	-
Ammonia, liquid	-	D	A	A1	-	Α	C1	-	B1	D	A ²	A1	A	A1	A	С	Α	D	Α	D	A	-	-	A ²	D	B ²	A ²	A	-	D	B ²	A	-	В	С	A	A	-
Ammonium Acetate	-	-	A	-	-	Α	A	-	A	-	Α	-	A	Α	-	В	A	-	-	-	Α	-	-	Α	Α	В	A	A	D	D	-	-	-	-	-	-	-	-
Ammonium Bifluoride	A ²	D	A		-	-	A ²	A	-	-	A	_	A	A	A	B	A ²	-	-	-	D	-	-	A ²	A	D	BI	B	-	D	B		-	B	-	A	-	_
Ammonium Casoinate	A ²		A		-	D	D2	A- A	A	-	A	A	A	A ²	A	D	A	-	-	A	A	-	5	A-	A	D		D						D	A	A	A	A
Ammonium Chloride	Δ2	B	Δ2		Δ1	Α	Δ2	Â	в	Δ2	Α	Α	Α	Δ2	Α	В	Α	Α	Α	Α	B	_	С	Δ2	Α	С	B2	B1	D	D	В	D	D	D	в	Α	Α	Α
Ammonium Fluoride 25%	D	_	A	A	-	A	_	A	Ā	-	A ⁴	_	A	A	A	Ă	A	-	_	A	Ā	-	_	_	A	D	D	D	D	D	-	-	D	Ā	Ā	A	_	_
Ammonium Hydroxide	В	C	A	A1	C	Α	A1	A	A	D	A	Α	A	Α	A	D	A	Α	Α	D	A	-	A	A	в	A ¹	A1	B ²	D	D	A	D	D	В	A	A	A	Α
Ammonium Nitrate	-	A ²	A ²	A ²	B1	A	A ¹	A	A ¹	-	Α	Α	Α	A ²	Α	A	A	Α	Α	С	В	-	С	A ²	Α	A ¹	A	B1	D	D	A	B	D	B	Α	Α	A	-
Ammonium Uxalate	- ^2	B	-		-	A	- ^2		-	A	A	-	- •1	A A2	-	D	A	_	_	_	A	-	_	A A2	_	A	A	-	-		A			A	_	-	_	_
Ammonium Persultate		D B2			-	А	A2 A2	A'	C1		Å	^	A' A2	A2	A'	A		A	A	Å	Å	-		A- A2	Å	A	C D							D			A	A
Ammonium Phosphate, Monobasic	12	B	Â	Â	B1	_	Â	Â	B	2	Â	_	Â	Â	12	Â	Â	Â	2	Â	Â	_	Â	Â	Â	B	č	B	-		Ĉ			B	Â	2	_	_
Ammonium Phosphate, Tribasic	-	В	A	A	-	-	C	A	B	-	A	-	A	A	-	A	A	A	_	A	A	-	A	A	Α	В	B	B	-	C	_	D	D	В	A	-	-	-
Ammonium Sulfate	A ²	B1	Α	A ²	B1	Α	A1	Α	A ¹	A ²	Α	Α	Α	A ²	Α	A	A	Α	Α	Α	A	-	Α	A ²	Α	В	В	A1	D	D	В	D	D	В	Α	Α	Α	Α
Ammonium Sulfite	-	D	A	-	B1	В	B ²	A ²	A ¹	-	A ²	-	A ²	A ²	-	A1	A1	A ²	A ²	A ²	A ¹	-	-	A ²	D	В	В	D	-	A	Α	D	D	-	-	D	-	-
Ammonium Thiosulfate	-	B	-		-	-	A	-	-	-	-	_	-	-	-	A	A	-	-	-	A	-	_	-	-	- • 1	A	-		D	-			-	A	-	-	-
Amyl Acetate		N B		A ²		^	B2	r l	A1	B1	B1	A	A	D A2		B	A			B			D I	D D		A'	A	R			A			A	R	A	A	_
Amyl Chloride	D	A	C	A1	-	B	D	Ď	C1	-	D	-	A	D	Â	D	D	D	A	D	D	-	D	D	B1	A ²	A ²	A ¹	-	Â	A2	A	A	A ¹	C	A	Â	-
Aniline	D	A ¹	B ²	D	D	В	C	D	A ²	D	A1	А	Â	C1	A ¹	D	В	D	A ²	D	D	в	В	D	Α	A	В	C	D	C	A	C	D	В	C	A	Α	-
Aniline Chlorohydrate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	В	-	-	-	-
Aniline Hydrochloride	D	-	D	D	-	-	D	-	D	D	D	-	A	B ²	A ²	D	B	-	-	A	D	-	D	D	A	D	D	D	D	D	B	D	B	D	Α	D	_	-
Antimony Trichloride	<u>В</u> <u>^</u> 2	В	∆2	A	-	- P	- P ²	A	A		A	-	В	Ь 	-	A	A P1	-	-	А	В	-	В	В	A A2	Б	A	A	В	N B	A	B	-	A	- P	-	A	A
Anumony Inchionae			C1			D	B1	D A ²	D	D A	A B1	D D	A	C1	Α Δ2	D	C	C	A	D	D D		D	_ D	A ²	D	D				D	n –		- C	Δ1			C C
Arochlor 1248	-	-	-	A2	C1	-	C1	_	A1	_	D	_	A	_	-	C1	В	D	A ¹	D	D	_	В	_	Ā	В	В	A	A1	A	-	B	-	A	A1	_	_	_
Aromatic Hydrocarbons	-	Α	D	A	C1	-	С	D	-	-	D	-	-	D	-	D	D	D	-	D	D	-	D	-	Α	-	С	Α	-	С	-	A	-	-	-	-	-	-

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2. Satisfac

2. Satisfactory to 120°F (48°C)

3. Satisfactory to 90°F (32°C)

4. Satisfactory to 200°F (93°C)

TECHNICAL DATA

CHEMICAL RESISTANCE CHARTS

WARNING

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- A No effect
- B Minor effect
- C Moderate effect
- D Severe effect; not recommended
- No data available

							P	lasti	CS										E	last	omer	s								Me	etals	;				No	nme	tals
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel [®]	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon®	Kel-F*	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C®	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Arsenic Acid	A2	D	A1	A ²	-	В	B ²	A1	C1	A1	Α	Α	Α	A1	Α	A ²	A ²	Α	-	В	Α	В	A	В	A ²	A ²	A ²	D	D	В	A1	D	A	В	В	Α	-	-
Arsenic Salts	-	-	-	-	B1	-	В	-	Α	-	-	-	-	A	-	-	-	-	-	-	-	-	-	A	A	-	-	-	-	-	-	-	-	-	-	-	-	-
Asphalt	-	B ²	A ²	A	B ¹	-	A ¹	-	A	D	B1	A	A ¹	A ²	Α	В	D	D	A	D	D	-	D	-	A	В	Α	A	B ¹	A ¹	A	A	A	-	-	Α	-	-
Barium Carbonate	A ²	A	A ²	A ²	-	-	B ²	A ²	A1	A ²	A	A ²	A	A ²	A	A ²	A	-	A	-	-	-	-	-	A	B1	В	D	B1	B	B1	A	A	B	A	Α	A	A
Barium Chloride	A2	A	A	A ²	BI	B	A	A	A	A	Α	A	A	A	A	A	Α	A	A	Α	A	-	A	В	A	A ¹	AI	D	BI	BI	B	C	BI	B	A	A	A	A
Barium Cyanide	-	B	D	A	-	-	B	-	A	-	D	-	A	D	-	C	A	A	-	-	C	-	-	-	A	A	A ²			C	A		D	A	-	-	-	-
Barium Hydroxide	A2	D	A ²	A ²	B	-	B2	A ²	A	D	В	А	A	A ²	A	A	A	A	A	A	A	-	A	-	A	BI	В	טן	D	D	B	D	-	В	В	A	A	A
Barium Nitrate	-	B ²	A		-	-	B2	A	A'	D	A	_	A	A	-	A ²	A	-	A	-	A	-	R	-	A	BI	B	I B		U	B	A	B	-	A	A	-	-
Barium Sulfido	A ²			A ²	יין		D ²	A' A2		U	D'	А	A	A2	A	A	A	Å	A	Â	A	-	Å	-	Å	D' D1	D' D2							A		A	Å	A
Boor	A-		A-	Δ ⁻	Δ1		Δ <u>-</u>	A-	A1		Δ1	 	A	A-	A	A	A	A		A	A	-	A	_	A	<u>۸</u>	Δ-		B	A1	A		B		R	A	A	A
Beet Sugar Liquids		B		Δ1	<u>A</u>		Δ1	Δ	Δ.		Δ1		Δ1	Δ2	Δ	Δ	Δ	Δ	Δ		Δ			_	Δ	Δ	Δ			C A				A.	Δ	Δ		-
Benzaldebyde	B		l î	l G	в	B	Δ1	R	Δ1	п	ĥ	Δ	Δ1	ĥ	Δ2	ĥ	Ω	ĥ	2	ĥ	ĥ	п	ĥ	п	Ω I	Â	B	R		Ā	Ω			Δ	Ω	Δ	Δ	Δ
Benzene				C1			ĥ		Δ1	D	D	Â	Â	C1	Δ2	D	ĥ	D I	B I	n	n	n l	nl	D I	Ā	B	B	B		Â	Â	ΙÂ	B	B	Â	Â	Â	Â
Benzene Sulfonic Acid		12	D	B	B	Ā	Δ1	Ă	D	D	D	A	Â	Ă	_	D	D	_	_	Ă	Ă	_	D	D	Â	B	В		_	12	Â	12		B	B	Â	Â	12
Benzoic Acid	- 1	В	A ¹	A ¹	D	A	A ¹	В	D	B ¹	B1	A ¹	A ²	A	Α	D	D	D	A	D	В	-	В	D	A	В	В	В	- 1	В	B	D	- 1	B1	A	A	A	A
Benzol	D	A	-	A1	C	-	C1	В	D	D	В	Α	Α	_	A	D	D	D	A	D	D	D	D	C1	A	A1	A1	B1	-	A	A	A	В	В	A	Α	A	Α
Benzonitrile	-	-	-	-	-	-	-	-	-	A1	-	-	A ²	-	-	-	-	-	A ²	-	-	-	A ¹	-	-	D	D	-	-	-	-	-	-	C	-	Α	-	- 1
Benzyl Chloride	D	A	-	-	-	-	-	D	A ²	-	C1	-	-	-	-	D	D	D	-	D	D	-	D	-	A ²	C1	B1	D	-	D	-	-	D	C	-	A1	-	- 1
Bleach	B	D	Α	D	-	-	-	Α	Α	-	D	D	Α	Α	Α	D	В	В	D	D	В	-	-	В	Α	Α	Α	A	-	-	D	D	-	A	-	-	-	-
Bleaching Liquors	-	-	-	D	-	-	A ¹	-	C	-	A1	-	Α	A1	-	D	Α	A	-	D	D	-	B	-	A	-	-	-	-	-	-	-	-	-	Α	-	-	-
Borax (Sodium Borate)	-	В	Α	A ¹	A ¹	A	A ²	A ¹	Α	-	В	А	Α	A1	Α	В	Α	A	A	A	Α	-	В	-	A	A	A	B1	-	В	A	A	B	В	В	Α	-	Α
Boric Acid	-	A	A	A ¹	A ¹	A	A ²	A1	В	-	Α	Α	Α	A ²	A	Α	A	A	A	A	D	A	A	A	A	B ²	A1	D	-	В	B ²	D	B	A	A	Α	A	A
Brewery Slop	-	В	-	A	-	-	-	-	-	-	-	-	-	-	-	Α	-	-	-	-	A	-	-	-	A	-	Α	-	-	A	A	A	-	-	-	-	-	-
Bromine	D	D	D	D	D	D	D	A	D	CI	D	D	A	C1	A	D	D	D	A	D	D	-	D	D	A	D	D	D	-	D	D	-	-	A	D	D	A	A
Butadiene		A	A	A	-	יין		D		D		A	A ²	01	A	D	U D	R	A	U U	B	-	ם ב	A	R	A	A'	A	-	U C	A	-		U	-	A	-	-
Butane	B	A		A	- D1	-			A ²	D D1		A	A A2	C1	A	A	U	в	A	U I	A	-	D	A	A	A ²	A2	A	-	L C	A	-		A	A	A	-	-
Buttor		A	A		D.	-	D-	A	D.	D.	A'	А	A ²	C'	A	A	A	A	A'	A	A			L L	Å	A C	A'		-		A		P	P	D	А	-	_
Buttermilk										 1	 1	_		<u></u>		Ā			_	n l	n	-		B	Â	2	Å									_		ı I
Butyl Amine	-		1-	R2	-	_	<u>C1</u>	n	Δ2	n	B1	D	Δ2	n	Δ1	_	_	-	ĥ	n	n	-	B1	n	ñ	-	Δ		_	B	_	-	-	B2	R2	Δ2	_	-
Butyl Ether	_	D	D	A1	_	_	-	D	A2	_	D	A2	Δ1	Å2	A1	B ²	D	-	Å1	D	D	_	D	A2	D	_	A1		_	-	_	_	_	-	-	Δ1	_	- 1
Butyl Phthalate	_	<u> </u>	D	B ²	_	A	C1	A2	A2	D	B ²	A	A2	_	B1	D	B2	D	Δ1	D	D	_	A1	_	C1	B1	B ²	B ²	_	_	_	_	_	B2	в	A2	_	-
Butylacetate	-	A	C1	B1	В	В	C1	В	A	D	B1	А	A	D	B ²	D	в	D	A1	D	D	-	D	D	D	В	Α	A	A	A	B1	A	A	A	A	Α	-	Α
Butylene	-	Α	Α	A1	-	-	B1	-	B1	D	-	Α	Α	A1	Α	Α	D	D	B1	D	D	-	D	-	A	Α	Α	A	-	D	Α	-	D	-	-	Α	-	-
Butyric Acid	D	A	D	A	B1	D	D	D	C1	D	B1	А	A ²	B1	Α	D	В	D	A	D	D	A	D	D	B1	B ²	B ²	В	-	D	В	D	C	A1	Α	Α	-	Α
Calcium Bisulfate	-	-	-	A	-	-	-	-	-	D	-	-	-	-	-	Α	A	-	-	A	Α	-	C	-	-	-	Α	-	-	C	-	D	-	-	-	-	-	- 1
Calcium Bisulfide	-	D	A1	Α	B1	-	B1	Α	Α	-	Α	-	Α	A ²	Α	A1	C	-	A	D	Α	-	C	-	A	В	В	C	-	C	В	-	-	A	Α	-	-	Α
Calcium Bisulfite	-	D	A1	A1	B	A	A1	A1	A ²	D	Α	Α	Α	В	Α	Α	D	A	A	D	Α	-	A	-	Α	В	Α	D	-	-	B1	-	-	В	Α	Α	-	Α
Calcium Bromide 38%	-	-	-	-	-	-	-	-	-	-	-	-	A	-	A	-	-	-	-	-	-	-	-	-	-	A 1	-	-	В	B	-	-	-	B	B	-	-	
Calcium Carbonate	-	A	A	A	-	-	B	A ²	A	U2	A	-	A	A ²	A	A	A	A	-	A	A	-	A	-	A	A	в	טן	-	A	B	-	-	I R	в	A	A	-
Calcium Chlorida (200/ in water)		A				-	- D2	_		-	- ^2	_	A	B ²	A	A	A	в	_	A	_	-	~	_	A	- 02	- D2		-	-	-	-	A	-	_	_	A	-
Calcium Chlorida (saturated)			A-	A.	A.		D-	Å	A.	-	A-	A	Å			Å	Å		A	~	Å	-		A			D~ B				Р	10				A		A
Calcium Fluoride			<u> </u>	A.							<u> </u>	A			A	A	<u> </u>	_		2	~		_		_	B	B		B	B				R		~		
Calcium Hydroxide 10%		Δ			_	Δ	_	_	Δ	_	Δ	Δ	$\overline{\Lambda}$	_	Δ	Δ	Δ	Λ	_	Δ	Δ	_	Δ	Δ	Δ	B	B				_	_	B	B		Δ	Δ	_
Calcium Hydroxide (saturated)	Δ	12	Δ	Δ	_	Δ	_	Δ	Δ	_	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	_	Δ	Δ	_	Δ	2	Δ	B	B	l n	B	C	_	_	B	Δ	Δ	Δ	Δ	-
Calcium Hydroxide		D	A2	A1	B1	A	Δ2	A2	A2	D	A2	A	A	В	A2	A	A	A	Α	A	A	-	A	B ²	A	B1	В	C1	-	Ď	в	A	<u> </u>	A	A	A	A	Α
Calcium Hypochlorite 30%	-	-	A	A	-	A	-	_	-	_	A	_	A	Ā	A	D	A	A	_	_	A	-	_	-	A	D	В	D	D	D	-	-	D	-	A	_	-	- 1
Calcium Hypochlorite (saturated)	A	-	Α	A ²	-	Α	-	Α	D	-	Α	-	Α	Α	Α	D	Α	Α	-	Α	Α	-	-	-	Α	D	В	D	D	D	-	-	D	Α	Α	Α	Α	-
Calcium Hypochlorite	-	D	B1	A ¹	C1	Α	A ¹	Α	D	D	A ¹	Α	Α	B1	Α	C1	B1	Α	B1	D	D	-	В	Α	Α	C1	B1	D	-	D	С	D	-	В	A ¹	Α	Α	Α
Calcium Nitrate	A	D	A ²	A ²	-	В	A1	A ²	A1	A ²	A ²	А	A ²	A ²	A ²	A ²	A ²	A1	A ¹	A1	A ²	-	B1	A ²	A ²	C1	B ²	B1	-	B ²	-	В	-	B ²	B ²	A ²	A	-
Calcium Oxide	D	A	Α	A	A	-	B1	Α	В	-	Α	А	Α	В	Α	Α	Α	A	-	В	Α	-	A	C	В	Α	Α	C	-	D	Α	-	-	A	Α	-	-	-
Calcium Sulfate	C	D	A ²	A2	-	-	B1	Α	D	A ²	Α	Α	Α	B ²	Α	A ²	Α	A	A	В	В	-	-	-	A	В	В	C	-	A	B1	A	-	В	A	Α	A	Α
Calcium Sulfide	-	-	A	-	-	-	-	-	-	-	A	-	Α	A	Α	A	A	A	-	-	A	-	-	-	A	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Calgon	-	A	-	A	-	-	-	A	A	-	A	-	-	-	-	A	A	A	-	A	A	-	A	-	A	A	A	-	-	C C	-	D	-	-	-	-	-	-
Cane Juice	-	A	A ²	A	-	-	-	-	A	-		_	A	A		A	A	A	-	A	A	-	A	A	A	A	A	B	-	A	A	A	-	-	-	_	_	-
Carbon Disulfida	יין		B			-	טן	U		U	В	А	А	D	A	D	в	D I	в	L L	D	-	ן ש	В	A	B	В	A	יין	В			יין	A	A	А	A	-
Carbon Disvide (dr.)		A				-			A A1	-		_	_	D A2	_				~	U I	D	-			A	A	D A1						-		_	_	-	_
Carbon Dioxide (wet)	D		A		A	-		A1	A1	-	A- A2	A	A	A-	A	A	P	P	A	P	P	-	P	A	B	A	A1				A		1		A	A	_	_
Carbon Disulfide								П.	R1	D		A		П	R2	D		П		n	D		2	ñ	Δ1		R.	A.			R			R	B	A	A	
Carbon Monoxide			Δ2	Δ1	Δ		Δ2	Δ2	Δ1	_	Δ	_	Δ	Δ2	B	Δ		c	Δı	n	B		Δ2	Ă	Â	Δ	Δ		12		R		Δ	B		Δ		
Carbon Tetrachloride	D	B1	D	A1	D	С	D	D	D	D	D	А	A	D	A2	D	D	Ď	A1	D	D	_	D	D	A	В	B	D	-	A2	B		A	A1	A	A	A	A
Carbon Tetrachloride (drv)	D	-	-	-	D	C C	D	D	_	_	D	A ²	A	_	A ²	C1	B1	D	D	D	D	-	D	_	A ²	В	B ²	D	A1	B ²	B	-	-	В	A ²	A ²	A	A
Carbon Tetrachloride (wet)	D	A ¹	D	-	-	C	-	D	-	-	D	A ²	Α	-	A ²	D	D	D	A1	D	D	-	D	- 1	- 1	A ²	A ²	D	B1	A ²	Α	C	-	В	A ²	A ²	Α	-
Carbonated Water	-	Α	Α	Α	-	-	Α	Α	Α	-	В	-	_	Α	-	Α	_	-	-	_	Α	-	-	-	Α	Α	Α	Α	D	Α	C	D	В	-	-	-	-	- 1
Carbonic Acid	-	B1	A	A2	D	В	B ²	A1	A1	A1	Α	А	A	A ²	A	D	В	С	A	С	D	-	A	Α	Α	A1	Α	B1	D	В	A	D	-	A2	B1	Α	A	- 1
Catsup	B	В	Α	Α	-	-	-	Α	A	-	Α	-	-	Α	-	Α	A	-	-	-	Α	-	-	-	A	A	Α	D	-	Α	C	D	D	-	-	-	-	- 1
Cellulose Acetate	-	-	D	Α	-	-	-	-	-	-	Α	-	A	D	D	D	A	D	-	-	Α	-	-	-	D	В	В	A	B	В	-	-	В	В	В	-	-	- 1
Chloral Hydrate	A	1 -	A	l –	-	D	-	-	-	-	D	-	A	A	IAI	-	-	A	-	-	-	-	-	-	D	DI	-	-	I –	I - I	l –	1 -	I - I	l –	l – 1	A	-	- 1

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2. S

US Toll-free: 800-323-4340

2. Satisfactory to 120°F (48°C) 3

Outside the US: 847-549-7600

Canada 800-363-5900 · India 91-22-6139-4444 · UK 0500-345-300

•

3. Satisfactory to 90°F (32°C)

•

4. Satisfactory to 200°F (93°C)

www.coleparmer.com

CHEMICAL RESISTANCE CHARTS

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

COLE-PAMER'S CHEMICAL

COMPATIBILITY DATABASE APP Chemical compatibility ratings where and when you need it—FREE!

Go to <u>ColeParmer.com/chemchart</u> to download iPhone App. Scan the QR code at right with your mobile device to get to our chemical compatibility database.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

Ratings

Chemical Behavior

- **A** No effect
- B Minor effect
- **C** Moderate effect
- D Severe effect;
- not recommended — No data available

							P	lastic	s										E	last	omer	S								Me	tals					No	nmet	tals
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel®	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropy lene	Sdd	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hy palon®	Kel-F*	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C [®]	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Chloric Acid	-	D	A	-	-	-	-	D	D	-	-	-	Α	A ²	-	-	-	-	Α	-	-	-	-	-	-	D	C1	D	D	D	A1	D	D	A ²	-	D	-	-
Chlorinated Glue	-		- A2	A A1	-	-	- D1	-	- c1	-	-		_	- ^2	- -	В	В	-	_	-	D	-	-	-	A	-	A	- -	- -	A	A A2	D	- D	^2	~	_	~	_
Chlorine Anhydrous Liquid	_	Δ1		C1	_	c	D.	B1	n l	c			Δ	n A-	Δ1	n	B	c	R2	c			n	c		C1	c			D D	А- П	n n	_		ĥ		_	C
Chlorine (dry)	-	D	D	D	D	B	D	B1	D	_	D	D	A	D	A	В	Ă	D	D	D	č	_	D	Ă	A	_	В	C1	D	B	Ă	D	А	A ²	D	A	_	_
Chloroacetic Acid	-	D	D	C1	D	Α	D	-	D	D	C1	A	Α	B1	A1	D	В	-	A ²	D	D	D	D	Α	D	B1	A1	D	D	C	B1	D	D	A1	A1	Α	-	-
Chlorobenzene (Mono)	D	D	D	C1	D	D	C1	D	D	D	C1	A	В	D	A1	D	D	D	A ¹	D	D	D	D	D	A	A	В	Α	B1	C	Α	В	В	A	В	A	Α	А
Chlorobromomethane	-	-	-	-	-	-	A	-	C	-	A	-	A	D	-	D	B	D	-	D	D	-	D	-	A	-	-	-	-	-	-	В	В	-	-	-	A	_
Chlorosulfonic Acid	U			С' С1		וע		וע	A n	C1				D	A n	D	ח	D I	A2	וע		U	D I	D I		A n	A R2	L C	B	В	A D	В	A D		A ²	A	A	A _
Chocolate Syrup	-	A	-	A	-	-	-	A	A	A	A ²	-	A	-	-	A	A	-	-	D	A	-	- 1	-	A	A	A	A	-	-	D	D	-	-	-	-	-	_
Chromic Acid 5%	В	D	A	D	D	A	A	A ¹	-	В	D	A	A	A ²	A	D	A	в	A	B	D	D	c	в	A	B	A	C	D	B1	D	D	D	в	A	A	A	А
Chromic Acid 10%	В	D	A ²	D	D	Α	A	A ¹	-	В	D	A	Α	A ²	Α	D	C	С	Α	D	D	D	С	C	В	В	В	D	D	D	D	D	D	A	В	Α	Α	-
Chromic Acid 30%	B	D		D	D	A	A	D	-	C	D	B	A	A	A ²	D	B	C	A	D	D	D	C	B	A	B ²	B ²	D	D	D	D	D	D	D	A	A	A	_
Chromium Salts	U	U		U	D B1	A	A	U	- B	U	וע	A	A	0	A ²	U	в	ι.	A ²	U	U	U	L L		A	L.	B-	U	U	U	U	U	U	В	A ²	A	A	A
Cider	_	A		A	B1		B	Ā	Ă	Ā	Ā		_	A		A	Ā	_	_	_	Ā	_	B1	_	Ā	Ā	A	В	_	Ā	A	D	_	_			Ā	A
Citric Acid	D	B1	B ²	A ¹	Ā1	Α	D	A ¹	A ¹	A ¹	A	A	Α	B ²	Α	A	A	С	A ²	A	A	Α	Ā	-	A	B1	A ²	Ĉ	D	D	В	D	D	A	A ²	A	Α	A
Citric Oils	-	B	-	A	-	В	-	A	-	-	A	-	-	-	-	A	B	-	-	-	D	-	-	-	A	A	A	C	-	A	D	D	-	-	-	-	-	-
Conner Chlorida	-	A	A	A	- ^1	-	-	A	A	-	A	-	-	- A1	-	A	A	A	-	A	A	-	A 1	-	A	A	A	A	-	A	D	-	-	A	A	-	-	-
Copper Chloride				B1	A. _	_	B2	Δ1				Â	A	Δ2	A	Δ	A	c	_	Δ		_	Δ.	_	Â	B	B				B	Δ	_	Δ1	B	Δ	Δ	A
Copper Fluoborate	-	B	A1	A	_	_	_	2	_	_	2	2	_	A	2	B	-	_	_	2	Â	_	2	A	A	D	D	_	_	-	D	D	-	B	_	2	2	_
Copper Nitrate	-	A	A	A1	-	-	B ²	A1	D	D	A	A	A	A ²	Α	Α	-	-	A	C	A	-	-	В	A	A	A ²	D	D	D	Α	D	D	B ²	в	A	A	А
Copper Sulfate 5%	-	D	A	Α	A1	Α	A ²	A1	D	A1	Α	Α	Α	A ²	Α	Α	Α	С	Α	С	A	-	Α	Α	Α	В	В	D	D	В	Α	D	В	Α	Α	Α	Α	Α
Copper Sulfate >5%	-	D	A	A	A	A	AZ	A	D	A	A	A	A	A2	A	A	A	C	A	C	A	-	A	-	A	B	B	D	D	D	В	D	-	A	A	A	-	А
Creasate	Δ			Δ	_	Δ	_	n l	n	_	_	_	Δ	Δ	_	Δ		n	_	_		_	D I		Â	B	B	B	c		_	_	B	B	Δ	Δ	_	_
Cresols	D	D	D	A ¹	D	D	C1	D	D	D	D	A	_	D	A ²	D	D	D	A1	D	D	D	D	в	A	Å2	Ă	Ā	_	Α	A2	С	Ā	B ²	B	A	-	-
Cresylic Acid	-	D	D	D	-	-	B1	-	D	D	A1	-	Α	D	B1	D	D	D	-	D	D	-	D	-	A	A1	Α	B ²	-	D	Α	Α	В	B1	A1	Α	-	-
Cupric Acid	-	-	-	A ²	-	-	B1	A ²	D	A1	A ²	A	A	A ²	-	B ²	A ²	-	A ²	B ²	A ²	-	A	A ²	A ²	D	B ²	D	-	-	-	-	-	A1	A ²	A ²	-	-
Cyanic Acia Cyclobeyane	_			A' A2		- n	- B1	- n	^	B		_	A	_ n	_	し R	- n	- n	_			- n	A' n	-	A	A 1	A	_		- B	D A2	DB	– B	- B	_	A	_	^
Cyclohexanone	D	A		C C		B	D	D	Â	D		Â	Â	D	Ď	D	B	_		D	D	_	D	D	δl		A2	A	-	B		B	B	Δ1	_	Â	A	A
Detergents	В	A ¹	Ā	A ¹	-	Ā	D	Ā1	A ¹	Ā1	Ā	A	A	Ā	Ā	Ā	Ā	В	A	B	В	-	A	Ā	Ā	A1	A ¹	В	-	В	A ²	_	_	В	A ²	A	A	Α
Dextrin	Α	-	Α	-	-	Α	-	-	-	-	Α	-	Α	Α	Α	Α	D	-	-	-	Α	-	-	-	D	-	В	В	В	В	-	-	-	-	-	-	-	-
Dextrose	A	-	A	A	-	A	-	A	A	-	A	A	A	A	A	A	A	A	-	A	A	-	A	-	A	B	B	B	B	B	-	-	В	В	-	A	-	-
Diacetone Alconol	_			A	_	A	A		Α'	U	A'		A	U		D	A	A n	В'				U		וח	R,	в	A'	A'	в	_	_	A			A	_	_
Dichlorobenzene	D	_	D	A	_	_	_	_	D	D	C1	_	Â	D	Â	D	D	D	_	D	D	D	D	_	cl	-	B1	B1	_	B1	_	_	_	A1	_	A2	_	_
Dichloroethane	D	A1	D	D	-	С	C1	A ¹	A ¹	D	D	-	A ¹	D	A	D	-	С	A ²	D	D	D	-	D	C	В	В	B1	В	D	-	-	Α	A	B1	A	Α	-
Diesel Fuel	-	Α	A ¹	Α	-	D	C1	D	D	A2	A ¹	A	Α	A1	Α	Α	D	В	A ¹	D	В	В	D	D	Α	A ¹	A1	A1	A1	A	Α	Α	Α	В	В	A	-	-
Diethyl Ether	D	-		D	С	D	-	-	A	D	A	A	A	D	A	D	D	D	C	D	D	A	D	_	D	B	B ²	B	BI	A'	_	-	A	B	A	A ²	-	-
Diethylamine Diethylane Glycol				A	_		B2		A 1	B1	A' A2		D A2	C1		ι Λ2	В А2	r l	A	A	A A2	_	B1	C1	A A2	A 1	A	B1	A	A	A	N N	A	A B1	A	A A2	_	Ξ
Dimethyl Aniline	D	D	D	A ¹	-	B	-	D	Â	D	<u>D</u>	A	Â	D	A ¹	D	B2	-	A ²	D	D	-	D	D	D	B2	B2	A ²	-	-	_	-	-	B ²	A2	A ²	-	-
Dimethyl Ether	-	-	-	-	-	-	-	-	-	-	-	-	Α	-	-	Ā	D	-	-	-	-	-	A	-	A	В	В	-	В	В	-	-	В	В	A	-	-	-
Dimethyl Formamide	D	D	D	D	-	A	A	D	A	D	A	A	Α	D	D	D	В	D	Α	C	D	A	С	D	C	A	В	A1	-	-	-	-	Α	-	-	-	-	-
Diphenyl Diabaard Quida	-	-	-	-	-	-	-	-	-	-	D	_	A	-	- D2	D	D	B	в	D	B	-	D	-	A ²	B	B	B ²	В	В	-	_	B	B	B	-	-	-
Disodium Phosphate		0	- \	A –	-	- ^	-	-	-	-		A _	A' ^	0	Δ-	A D		<u>ل</u>	-	-		-	-	-	A	D'	A	D'	- C	- C	A	A	A	D'	A'	-	-	_
Dves	12	С	12	Α	_	2	_	Α	A	_	2	_	2	B	2	_	2	2	_	_	ĉ	_	_	с	Â	A	Â	В	Ă	_	С	_	А	_	_	_	_	_
Epsom Salts (Magnesium Sulfate)	B ²	В	A1	Α	-	-	A ²	A ¹	A ¹	A ¹	A	A	A	A1	A	Α	A	A	A	В	A	-	A	В	A	A	В	B1	Α	Α	С	Α	Α	В	A ¹	A	-	-
Ethane	-	A1	A1	A1	-	-	-	-	D	-	D	-	A	A1	Α	A	D	В	-	D	В	-	D	A	A	A	A ¹	-	-	-	A	-	Α	-	-	A	-	-
Ethanol	Bi		В	A ²	-	A	В	A	A	B2	A	-	A 1	C	- 01	C	A	A	A	A	A	A	B	C	A	A	A	B	A	A	A	В	A	A	A	A	A	-
Ether		Δ1		Δ1	_	n		n	Δ	_				D D	B1	D	C C		B1	D	D I		n l		c	Δ	Δ	B1	B1	Δ	Δ	c	Δ	B1	Δ1	Δ	A	_
Ethyl Acetate	D	Â		A	в	Ă	Ă	A ¹	A ²	D	A1	A	A	D	D	D	в	D	A1	cl	D	A	в	D	Ď	B	B	A ²	B	Â	A	Ă	Â	Ă	A1	A	Α	_
Ethyl Benzoate	D	-	D	-	-	В	C2	A ²	-	D	B1	-	A	D	D	D	-	-	-	D	D	-	D	D	A ¹	-	-	-	-	-	-	-	Α	-	-	-	-	-
Ethyl Chloride	D	A1	D	D	C	C	C1	D	A1	D	D	A	A	D	A	A	A	D	B	B	C	D	D	D	A	A	Α	B	A	A	Α	C	В	B1	A	A	Α	-
Ethyl Ether Ethyl Sulfata	D	A	טן	A ²	-	D	D	D	A	-	D	A	A	D	A ²	D	D	U	A	D	U	-	D	D	D	B	B	BI	В	A	-	C	A	RI	A	A ²	-	-
Ethylene Bromide	D		p	A'	_	_	D	_	_	D	D	_	A	D	Ā	D	c	c	B	c	c	_	D	D	A	A	A	B	-	B	A _	_	D _	B	B	A	_	Ξ
Ethylene Chloride	D	A1	D	D	-	С	D	D	А	D	C1	Α	Α	D	A	D	D	D	A ¹	D	D	-	D	-	В	В	В	В	-	A	-	-	В	-	B1	A	-	А
Ethylene Chlorohydrin	D	D	D	D	-	-	D	-	D	D	D	-	А	D	А	D	В	С	-	С	Α	D	С	D	Α	В	В	В	В	В	-	-	В	В	В	Α	-	-
Ethylene Diamine	D	D	D	A ¹	-]	B	A	D	D	A ²	- [A	A	D	B	Α	A	B	D	B	B	-]	A	-	B	B1]	В	B1	D	B	-	-]	D	C]	A	-]	- [-
Ethylene Dichloride		BI	D D	D	U L	D		D	A	D B1	D	A	A	D	A	D	C	U U	A	D	D	D N	U U	D	A	B	В		B	C	C	A	-	B B1	B A1	A	A	^
Ethylene Oxide					A	B	A ²	Α Δ1	А Д1	C1			Δ	н П		А П	A C	D D	Δ	$\frac{1}{n}$	D D	<u> </u>				B	B			A C	A	А П	А П	Δ'	<u>^'</u>	Δ	A	A _
Fatty Acids	Ā	Ă	Ă	Ā	2	Ă	D	A1	A1	B1	Ă	-	Â	Ă	Â	В	Ď	B	Â	č	c	D	č	D	Ă	B	Ă	Ā	Ċ	Ă	ĉ	c	D	Â	в	Â	Α	_
Ferric Chloride	A	D	A	A	C C	D	A1	A ²	A	A ²	A	A	A	A	A	Â	À	в	A ¹	A	В	_	В	-	A	D	D	D	D	D	D	D	D	B ²	A	A	-	-

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2. Satisfactor

2. Satisfactory to 120°F (48°C) 3. Satisfactory to 90°F (32°C)

4. Satisfactory to 200°F (93°C)

200

TECHNICAL DATA

CHEMICAL RESISTANCE CHARTS

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- A No effect B – Minor effect
- **C** Moderate effect
- \mathbf{D} Severe effect;
- not recommended
- No data available

							<u> </u>	lasti	CS										E	laste	omer	S								Me	etals					No	nmet	tals
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel®	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon®	Kel-F®	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C®	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Geramic magnet
Ferric Nitrate	A ²	D	A	A	-	-	A ²	A ²	A ¹	A ¹	A	A	A	A	A	A	A	A	A	A	A	- 1	С	-	A	В	В	D	D	С	D	- 1	D	B1	A	A	-	-
Ferric Sulfate	A ²	D	A	A	-	-	A ²	A ²	A1	A1	A	A	A	A	A	A	A	A	A	A	A	-	В	-	A	B1	Α	D	D	C	D	D	D	A1	A1	A	A	-
Ferrous Chloride	A ²	D	A	A	-	Α	A ²	A ²	D	D	A	A	A	A	A	A	-	A	B1	A	A	-	-	-		D	D	D	D	C1	C	D	В	B1	A	A	-	А
Ferrous Sulfate	A1	D	A	A	-	_	A2	A ²	D	A1	A	A	A	A	A	A ²	A	в	A	в	_	_	_	_	в	в	В	B1	B1	В	D	D	В	В	A1	A	A	А
Fluoboric Acid	A ²	A1	A2	D	-	Α	A2	A1	D	-	A	A	A	A	A1	A	A ²	A	в	A	A	_	-	С	в	в	В	D	-	B1	D	D	-	A1	D	A	сİ	А
Fluorine	Δ1	D	D	Δ1	-	D	D	- 1	D	С	D	D	D	D	Δ1	D	Δ1	- 1	Α	С	-	D	D	D	С	С	Α	Α	Α	С	D	D	С	B1	D	С	-	Α
Fluosilicic Acid	A ²	A1	Ā	C	_	В	Ā2	Δ2	D	A1	Ā	Ā	Ā	D	Δ1	Ā	A ²	Α	C	Ā	A	_	-	Ā	B1	č	В	D	B1	B2	D	D	D	B	D	Ā	С	Α
Formaldehvde 40%	A ²	A2	A2	A2	В	A	D	A	Ā	A1	A	A	A	Ā	A	В	A	B	Ā	B	B1	A	_	D	A	A1	Ā	В	Ā	Ā	Ā	B	B2	В	B	A	_	Α
Formaldehyde 100%	В	A	A	A	-	A	B	A	D	A ²	cl	В	A	A	A	c	A	Ċ	A	τÌ	c	A	в	D	D	C	A	Ā	-	В	A	Ċ	A ²	Ā	Ā	_	-	Α
Formic Acid	D	A ²	A ²	C1	В	A	D	A	D	A1	AI	Ā	A	A ¹	A	č	A	A ¹	A ¹	čΙ	Ă	_	B	C	Ċ	B1	A ¹	A	D	Ċ	C	D	C	A	C1	A	-	Α
Fruit Juice	В	D	A	A	-	-	Α	В	Α	- 1	В	- 1	Α	Α	A	A	- 1	В	A	D	A	- 1	- 1	A	A	Α	Α	Α	D	_	C	D	A	Α	A	-	Α	Α
Fuel Oils	D	A	-	A1	-	С	в	в	A1	B1	A	A	в	A ²	в	A	D	C	A	D	в	-	D	D	A	A	Α	C1	В	A	A	A	A	A1	A	A	-	-
Furan Resin	_	D	-	A1	-	-	D	-	-	-	D	A	A	A	D	D	сl	D	A1	D	D	A	D	Α	D	A1	Α	Α	-	-	A	-	-	В	-	_	-	-
Furfural	D	A	D	A1	-	Α	D	D	вΪ	Dİ	Dİ	A	A	D	B ²	D	D	вΪ	D	D	D	A	Dİ	D		A	В	A1	-	В	A	В	A	В	A	A	-	-
Gallic Acid	-	-	C	-	-	Α	A	A	A	-	A	A	В	В	A1	В	В	D	A	A	В	-	D	D		A	В	D	-	В	A	D	D	B1	В	В	-	-
Gasoline (high-aromatic)	D	В	C1	Α	Α	В	Α	В	Α	Α	A	A	В	Α	A	Α	D	В	Α	D	Α	D	D	-	Α	Α	Α	D	-	A	Α	Α	-	Α	В	Α	Α	Α
Gasoline, leaded, ref.	D	A	-	A2	A	В	-	B	A ²	A ²	B	A	A	В	A	A ²	D	B	A ²	D	B	D	D	D	A1	A1	A ²	Α	-	A2	-	-	В	A	A	A ²	A	Α
Gasoline, unleaded	D	A	C	A2	-	В	-	D	A ²	A ²	C1	A	A	C2	A	A1	D	A	A ²	D	B	D	D	D	A1	A1	A ²	A ²	-	A ²	A	A	В	Α	A	A ²	-	-
Gelatin	-	В	A2	В	-	Α	A ²	A ²	A1	-	A	-	A	В	A	A	A	В	-	A	A	-	A	Α	A	A ²	A ²	Α	D	A	A	A	A	Α	A	A	-	Α
Glucose	В	A	A2	В	-	Α	A ²	A ²	A	A ¹	A	B	A	A ²	A	A	A	В	-	A	A	-	A	Α	A	A1	Α	Α	A	-	A	A	Α	Α	A	A	-	А
Glue, P.V.A.	-	A	A	A	A	Α	A1	-	A1	-	-	-	Α	С	-	Α	Α	A	-	A	A	-	Α	С	В	A1	A ²	Α	-	A	Α	A	В	Α	Α	Α	-	Α
Glycerin	C	A	A	A	A	Α	A1	A	A1	A ²	A	A	A	A	A	A	A	A	A	A	A	D	A	Α	A	A ²	Α	Α	В	A	A	A	A	Α	A	A	A	-
Glycolic Acid	В	A	A	A	-	-	A ²	-	-	-	A	A	A	В	B	A	A	A	В	D	A	-	A	Α	A	A	Α	-	-	-	-	-	-	Α	A	A	-	-
Gold Monocyanide	-	A	-	A	-	-	-	-	-	-	-	-	D	-	A	A	-	-	-	-	A	-	-	Α	A	A	Α	-	-	-	A	D	-	-	-	-	-	-
Grape Juice	В	A	A	A	-	-	В	-	Α	-	-	-	Α	Α	A	Α	A	-	-	D	D	-	Α	В	A	Α	Α	-	-	A	C	D	-	-	A	-	-	-
Grease	-	D	-	A	-	-	-	-	-	-	-	-	Α	Α	A	Α	D	-	-	D	D	-	D	Α	A	-	Α	-	A	A	A	A	Α	Α	-	-	-	-
Heptane	D	A	A	A	-	В	B1	B	A	B	C2	A	A	C1	A	A	D	В	A	D	B	A	D	D	A	A	Α	Α	A	A	A	A	A	A	A	A	-	-
Hexane	D	A	B1	A	A	С	D	В	В	D	B1	A	A	B1	A	A	D	В	A	D	B	A	D	D	A	A	Α	Α	A	A	A	A	A	Α	A	A	-	Α
Honey	-	A	-	A	-	-	В	-	A	A ¹	A	-	A	A	A	A	A	-	-	A	-	-	A	Α	A	A	Α	Α	-	A	A	A	-	Α	-	-	-	-
Hydraulic Oil (Petro)	-	В	-	A	-	A	C	-	A ¹	-	D	D	A	A	A	Α	D	A	-	D	A	В	В	Α	A	A	A	Α	A	A	A	A	A	A	-	В	-	-
Hydraulic Oil (Synthetic)	-	-	-	A	-	Α	A	-	A1	-	D	-	A	A	A	D	A	A	-	D	A	D	В	А	A	A	Α	А	A	A	A	-	A	Α	-	В	-	-
Hydrazine	-	B	D	A	C	D	-	-	-	D	C	-	A	-	A	В	A	В	-	Сļ	В	-	В	D	A	A	A	-	-	-	D	D	A	-	-	-	-	-
Hydrobromic Acid 20%	-	C	A	B1	-	D	B ²	В	D	-	A ²	-	-	B ²	A	D	A	A	A	A	D	-	D	С	A	D	D	D	D	-	C	D	D	A	A	A	-	Α
Hydrobromic Acid 100%	B	D	A ²	D	-	D	BI	B	D	-	CI	A	A	A	A	D	A	A	A	A	D	-	D	С	A	D	D	D	D	-	D	D	D	C	A	A	-	A
Hydrochloric Acid 20%	A	C	A ²	A	B	A	A2	A	D	Bi	B2	D	A	A ²	A	-	A	A	A	A	C	A	D	C	A	D	D	D	-		D	D	D	A'	D	A	C	A
Hydrochloric Acid 37%	A	C	A ²	A	C	A	B2	A	D	D	C	D	A	B	A	B	C	B	A	A	B	A	B	C	A	D	D	D	-	D	D	D	D	В	D	A	C	A
Hydrochloric Acid 100%	A		A	-	-	D	-	A	D	ן ט	Bil	D	A	U	A	ן ט	ן ט	ן ט	A	ן ט	ן ט	A	ן ט	U	A	D	D	D		U D		טן	D	A		A	U	A
Hydrochloric Acid, Dry Gas	-	-	A	A	-	U	A ²	A	A	-	B	U I	A	A ²	A	_	_	-	A	-	-	A	_	_	_		U	D		A		-	U	A		A	-	А
Hydrocyanic Acid	B	B	A	A	L C	A	A ²	A	в	-	A	R	A	R	A	R	B	A	-	R	B	A	U I	A	A	BI	A	A	טו	A		U	U	A	B	A	-	-
Hydrocyanic Acid (Gas 10%)	-		A 01	-	-	A	-	U 01	- 01	Bi	A A	-	A	A	-	B	A	-	-	B D1	A	A	D	A	A	-	-	-	-	- -		-	-	-	A	-	-	-
Hydrofluoric Acid 20%				A C2	-	A	A ²			n l	A2	A	A	B D1	A	D I	D	B	B		B	D	D	C C	A	L L	D	D	-	B ²			B	В		A	-	В
Hydrofluoric Acid 30%				D1		A	C1	D I	D I	N I	C1	A	A	D'	A	D I	C I			B.I	D I	D	D I	C C		D I	D	D	-	D ²				D		A	-	D
Hydrofluoric Acid 100%				р.		D	5	D I	D I	N I	C1		A		A	D I				N I	D I	D	D I			D1	D D1	D	-					D		A	U	D
Hydrofluosilisis Asid 20%						B	 2	D B2	n l		~		Å	A2				B			B		D	~		C2	B1	D	-	B2			B	D		_	-	D
Hydrofluosilicic Acid 20%	_		12	C1	_	C C	B1	B2	n	_		<u></u>		R1	A1	B		B	R	2	B	_	n	n		n	D	n	_	B2			-	B	n	$\overline{\Lambda}$	_	-
Hydronen Gas	_	12	Δ2	<u> </u>	Δ	Δ	Δ2	Δ1	Δ2	Δ2	21	21		Δ2	21	Δ	Δ	Δ	B	R I	Δ	_	c l	Δ		Δ	Δ	Δ		Δ			Δ	Δ	Δ		_	_
Hydrogen Perovide 10%		l n		C1	12	~		Λ2	c1	A2				A1		n		n	~	B	ĥ	_	Ň	B		R2	B	Â	_	B1		l r	n				_	Δ
Hydrogen Peroxide 30%	12			B		Δ	C2	Δ2	n		B1			Δ1	2	n	Â	n	Â	č l	n l	_	R I	B		B2	B	Δ		B1	B	B		Δ		C C	_	Δ
Hydrogen Peroxide 50%	_				_	Δ	C ²	2	n	Δ2	B1	2	A	Δ1	Δ1	D I	B	D	Ā	čl	n	_	B	B		B2	Δ2	Δ	_	B1	B		D	Δ	Ā	C I	_	A
Hydrogen Peroxide 100%	Δ	D	A	Δ	- 1	Α	C2	Δ	D	Α	B1	С	A	Δ	Δ1	D	D	D	B	C I	D	- 1	B	B	Α	B2	Δ2	Δ	D	B1	D	В	D	Δ	B	C	Δ	A
Hydrogen Sulfide (agua)	B	Ċ	A	A	_	A	Ă	Δ1	C1	A	A1	Ă	A	B1	A	D	B	D	A1	č	Ā	_	ĉ	Ā		c	A	В	_	Ā	D	D	-	A	B	Ă	A	A
Hydrogen Sulfide (dry)	_	<u> </u>		Δ	Δ	Δ	Δ	_	C1	_	Δ1	A	A	A2	A	D	B	B	B	č	A	_	č	A		C1	A	В	D	B	D	D	D	A	Ā	A	_	-
Hydroguinone	D	A	A	_	_	_	A	_	D	_	A	_	A	в	_	D	D	D	_	A	A	_	_	_	в	в	В	В	_	-	-	-	В	В	В	A	_	Α
Hydroxyacetic Acid 70%	-	A	A	A	-	_	A	-	-	-	_	-	A	D	A	Ā	Ā	- 1	-	_	A	-	-	_	Ā	-	_	_	-	-	D	В	-	_	Ā	_	-	-
Ink	Α	B	-	A	-	-	-	-	С	- 1	-	-	A	С	A	A	-	-	-	D	A	-	- 1	С	A	С	С	-	-	-	D	D	A	-	-	-	A	Α
lodine	D	D	D	C	В	В	A1	C1	A	-	C	D	A	A	A ²	В	В	D	A	D	D	-	-	A	A	D	D	Α	-	A	D	D	D	A	A	D	-	-
lodine (in alcohol)	-	D	-	-	-	В	В	-	C	-	-	-	-	A	A	-	A	-	-	-	-	-	-	_	_	-	_	В	-	В	-	-	-	В	В	-	-	-
lodoform	-	-	-	-	-	_	-	-	_	_	_	_	С	A	С	D	A	_	_	В	A	_	-	С	-	A	Α	-	-	-	A	-	В	D	В	_	-	-
Isooctane	-	-	-	A2	A	В	В	D	A ¹	B1	A ²	A	A	A ¹	A ²	A2	D	-	A ¹	A1	B1	D	D	D	A1	A1	A1	A1	A	A1	-	-	-	-	-	A2	-	-
Isopropyl Acetate	-	D	-	Α	С	В	B1	-	B1	D	B1	-	A	D	D	D	В	D	- 1	D	D	-	D	D	D	С	Α	D	-	A1	В	-	-	В	-	A	-	-
Isopropyl Ether	-	D	-	D	-	D	В	_	A1	D	В	-	A1	В	D	В	D	С	Α	A	D	-	D	D	D	Α	Α	Α	Α	A	A	-	В	Α	-	A	-	-
Isotane	-	-	-	A	-	-	-	-	D	-	D	-	-	Α	A	A	-	-	-	-	D	-	-	-	A	-	-	D	-	-	-	-	-	-	-	-	-	-
Jet Fuel (JP3, JP4, JP5, JP8)	-	A1	-	A	-	D	D	D	C	A ¹	A1	A	A	С	в	A	D	D	A	D	D	D	D	D	A	A	Α	Α	-	A	A	A	A	A	A	A	-	-
Kerosene	D	A2	-	Α	С	В	C1	D	A	D	В	A	Α	A ²	A	A	D	D	A	D	A	D	D	D	A	A	Α	Α	Α	A	A	A	В	В	Α	A	A	В
Ketones	A	D	-	C	-	D	C1	D	A ²	D	C	A	Α	D	C1	D	A	-	B1	A	D	D	-	D	D	Α	Α	В	-	A	A	-	Α	A	A	A	Α	-

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2.

2. Satisfactory to 120°F (48°C) 3.

3. Satisfactory to 90°F (32°C)

CHEMICAL RESISTANCE CHARTS

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

CHEMICAL COMPATIBILITY DATABASE

To find the safest materials for your application, search this database by chemical, material, or compatibility level.

Scan the QR code at right with your mobile device to get to our chemical compatibility database.

A Danger

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- A No effect
- **B** Minor effect
- C Moderate effect **D** – Severe effect;
- not recommended
- No data available

		_			_	<u> </u>	P	lasti	cs											ast	omer	5			-					IVIE	tais				_	NO	nmet	ais
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel [®]	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	Sdd	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon [®]	Kel-F*	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon® (R-3603)	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C®	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Lacquer Thinners	A	D	-	A	D	D	Α	D	A1	В	D	-	Α	D	-	D	D	D	-	D	D	-	D	D	D	A ¹	Α	Α	Α	Α	A	С	Α	Α	С	Α	-	-
Lacquers						D			A'	D	D	_	A	D B1	D B1	D	D	D	- ^1			-		A			A B1	A	– –	A R2	A		A	A B1	~	A	_	-
Lard	-	A		B	-	A	A	A	A1	A1	B1	_	Â	A1	A I	Â	D	B	- I		D	Ā	B	Ď	Â	A I	A.	A	-	A	A	A	D _	A	Â	Â	_	_
Latex	В	В	-	A	-	-	-	_	A1	-	A ²	-	Α	-	Α	Α	Α	-	-	-	-	-	Α	Α	A	A ²	A ²	А	-	-	Α	-	-	Α	-	-	-	-
Lead Acetate	B	B	A2	A	-	A	A ²	A1	Α	-	A1	A	A	B	A	B	A	D	Α	A	A	-	A	B	D	B	B1	D	-	B1	Α	Α	-	B1	A ¹	A	Α	-
Lead Nitrate	В		A ²			A	A ²	A'	- B1		A' A2	A	A' B	A ²	A ²	A ²	A ²	_	_	A' B		_	B	A ²	A ²	C	L B	D C	_	B ²	-		_	B2		A'	_	_
Liaroin	_	B		Â	_	_	Â	_	D	2	A2	_	Ă	_	Â	Ă	ρĺ	ĉ	_	D	βÌ	_	D	Α	Â	_	Ă	D	_	_	A	_	_	_	_	_	_	_
Lime		В	-	A			Α	_	A1	_	-	_	A1	В	Α	Α	D	-	_	-	Α	-	-	Α	A	Α	Α	Α	_	_	A	Α	-	-	Α	Α	-	-
Linoleic Acid	A	B	A2	-	-	-	A	-	-	-	B1	-	A	A ²	A ²	B1	D	D	-	D	-	-	B1	A ²	B1	B	A	A ²	-	-	-	-	D	-	-	A ²	-	-
Lithium Chloride	-		A2	1			A2	_	_	ויש	A ²	_	A	U	A ²	A ²	A'	_	_	B	A'	_	A'	A ²	A'	A' B	A ² B	ח	_	A ²		A	_	- B	_	A ²	_	_
Lubricants	_	A	_	A	А	B	D	C1	A1	A1	A1	A	Â	B2	A	Ă	D	Α	_	D	D	_	D	в	A	Å2	A ²	A ²	_	A ²	A	Α	Α	A	A	Ă	_	_
Lye: KOH Potassium Hydroxide	A	A	A	A	D	В	Α	A1	С	D	A	Α	Α	В	Α	B1	A ²	Α	В	В	В	Α	С	В	В	В	A1	D	D	D	В	B ²	В	B1	D	С	D	А
Lye: NaOH Sodium Hydroxide	C		A	A		B	D	A	A	D	A	A	A	A D ²	D	A ¹	B1	A	B	A ¹	B ²	A	A ¹	B	B1	B	B1	D	D	D	D	D	В	C	B	-	A	_
Magnesium Bisulfate			A4		<u> </u>	D	A ²	A ²	Δ1	Δ1	Δ2		Δ	Δ2	A ²	B	A	A _	A ²	B2	B	A _	A	Δ2	_'		Δ1	D D	_	Δ1	D		_	A'		Δ1		A _
Magnesium Carbonate	В	A	A ²	A	_	_	В	A2	2	A1	Â	_	A1	B	Α	A ²	A	Α	_	-	Ă	_	_	2	A	β	B	A	_	Â	A	_	А	В	A	2	Α	A
Magnesium Chloride	В	В	1 A	A	С	Α	A1	A1	A1	A ²	A ²	A1	Α	В	Α	A ²	Α	A ²	Α	Α	Α	-	Α	-	A ²	D	D	D	D	В	С	D	A ²	A ²	A ²	A ²	A ²	А
Magnesium Hydroxide	B	A	A	A	С	B	A2	A ²	B1	A1	A	A	A	A2	A	A	A	A	A	A	A	-	A	A	A	B	A	C1	D	B	A	A	B	A	A	A	A	_
Magnesium Nitrate	В				_	В	A ²	A'	A'	A'	A	A	A	A²	A	A	A	A	_	A	Å	_	_	A	A C	N B	N N	B	_	A			в	A	A	_	A	A _
Magnesium Sulfate (Epsom Salts)	B ²	B	A1	A	-	Α	A ²	A1	A1	A1	A	A	A	A1	A	A	A	Α	Α	в	A	-	A	A	Ă	A	B	B1	Α	Α	c	A	Α	В	A1	A	-	_
Maleic Acid		A	A	A	-	Α	B ²	A1	Α	-	Α	В	Α	A ²	Α	D	D	D	-	В	D	-	-	D	A	A	В	B1	-	В	A	Α	-	В	Α	Α	-	-
Maleic Anhydride	-	D	-	A	-	A		-	_	-		-	A	- ^2	A	D	D	D	-	D	D	-	-	~	A	A	A A2	A P1	- -	- D2	-	-	- D	-	-	-	-	-
Manganese Sulfate	B ²				_	_	Δ1	A2	A A ²	Δ1	_	Δ2	A	C	A A ²	A A ²	A ²	_	Δ1		A2	_	Δ1			B	B2	B1	D	A2	C	A	B	A2	A2	A2	A	_
Mash	-	A	-	A	-	-	A	_	A	-	-	-	-	_	_	A	A	-	_	-	A	-	-	A	A	Ā	A	A	-	-	Ā	-	_	_	-	-	_	_
Mayonnaise	-	A	-	A	-	-	D	-	Α	-	-	-	Α	D	Α	С	-	-	-	D	A	-	-	D	A	С	Α	Α	-	-	D	D	В	Α	-	-	-	-
Melamine Marcuria Chlorida (diluta)	- -			A	- B	_	_		A	_	A	~	A	D	_	C	A 1	_	_	_		-	C	וט	A		D	– n	- -	- -	שו		– n	-			~	-
Mercuric Cyanide	B	_	Â	Â	-	-	Â	- A-	A ²	_	B	Â	B	Â	A	Â	A ¹	_	D	-	Â	_	A	_	A1	č	C	D	-	D	-	C	D	Ă	A	_	A	_
Mercurous Nitrate	C ²	-	A2	-	-	-	A	A ²	-	A ²	A	-	Α	Α	Α	B1	A1	-	-	B1	B1	-	-	A ²	A1	A ¹	A ¹	D	-	-	-	-	-	A ¹	A1	C	A	А
Mercury	B	A	A	A	В	A	A	A1	A	D	B	-	A	A	A	A	A	A	A	A	A	-	-	A	A	A	A	D	D	A	D	A	D	A ²	A	C	A	A
Methanol (Methyl Alcohol)	- D			B	B	Δ	Δ1	Δ	A B ¹	B1	A A2	Δ	A	<u>Б</u> 1	A	A		A	Δ1		A				A C		A	Α Δ1	Δ	A		Δ	- B1		B	A	Δ	Δ
Methyl Acetate	D	B	-	D	-	C	B1	_	A ²	D	D	-	A	D	B1	D	B	D	A	D	B	_	D	D	D	A	В	A	-	A	A	A	В	A	-	A	-	_
Methyl Acetone	-	D	-	C	-	-	-	-	A	-	-	-	Α	D	D	D	A1	-	-	A	D	-	-	A	D	A	Α	А	Α	A	В	A	-	-	-	A	-	-
Methyl Acrylate	- -	B	-		-	-	-	- ^2	- D1	- D1	D A2	-	-	-	BI	D	B	D	-	D	B	D	D	-	D	A	-	- ^1	-	-	-	A	-	-	- D	-	-	-
Methyl Bromide				B		- A	C1	A- -	B1	-	C	_	A	D	A	B1	Ď	Ď	_	Ď	Ď	Ď	_	D	Ă	Â	A	D.	- A	- A	- A	A	B	- -	_	Â	_	- -
Methyl Butyl Ketone	- -	D	-	C	-	-	-	-	D	D	D	-	-	A	D	D	A ¹	D	-	D	D	-	D	-	D	A	A	_	-	-	A	-	_	-	-	-	-	-
Methyl Cellosolve	-	D	D	C	-	-	-	-	C	D	B	-	A	D	A	A ¹	B ²	D	-	D	B	-	D	C	D	B	В	В	A	A	-	C	В	-	-	A	-	-
Methyl Chloride					-	-	<u> </u>	D	C Bi	D		В	A		A	D	D	U	A	0	D	U	D	0	A'	A	A	D	A	B ²	U -	U	-	В	A	A	-	_
Methyl Ethyl Ketone	D	C C	D		В	D	D	D	A1	D	B ²	Α	Α	Ď	D	D	A ²	D	Α	D	D	D	D	D	δ	A	Α	В	Α	Α	A	Α	А	Α	A	A	Α	A
Methyl Ethyl Ketone Peroxide	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	D	D	D	-	D	D	-	в	-	D	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Isobutyl Ketone	D	-	D	C	В	D	C	D	B ²	D	A	A	A	D	D	D	B1	D	A	D	D	D	D	D	D	B	B	B	-	A	С		B	A	A	A	-	-
Methyl Methacrylate			-		-	-	<u> </u>	U -	- A	-		-	- A	A	- B1	D		D	-	n	D		C	-	n	B	B	- -	-	- A	-		- A	-	-	- A	-	_
Methylamine	D	D	-	A	-	-	A1	-	-	-	A ²	-	Α	D	C	B	A1	-	A	B	-	_	_	D	D	Ā	Ā	А	D	A ²	D	Ă	-	-	-	A ²	-	-
Methylene Chloride	D	B	D	A	D	D	D	D	C1	D	B1	Α	Α	D	B1	D	C1	-	Α	B	-	D	-	D	B	B	В	С	Α	В	A	B	В	В	В	A	-	-
Milk Minoral Spirits	B	A	A	A	-	- -	A	A ²	A	A	B	~	A	A ²	A ²	A	A	A	A	A	A	-		A	A	A	A	A	ט	A			D	A	A	A	A	A
Molasses	B		A	A	- 1	A	A	A A ²	A1	-	B	-	A	A	B1	A	A1	-	A	A	A	-	-	A	A	A	A	A	B	A	D	B	_ A	A	A	A	- A	
Monochloroacetic Acid	- -	D	-	-	D	D	-	-	D	D	-	-	A ²	-	B1	D	C	A ²	В	-	A ¹	D	-	-	C	A ¹	A ¹	D	В	B1	-	D	D	A ²	A ²	B ²	-	-
Monoethanolamine	-	D	-	A	-	-	C	A	A	-	B	A	A	D	C	B1	B	D	-	B	D	-	В	D	D	A	A	B	-	Α	-	Α	D	-	В	A	-	-
Morpholine Motor Oil		B		-	B	_	- 		A2 A2		Δ1		A ²	- B	B		וט	_	^	A'	D B1	_	_	-	_		A' A2	A' 1	_		-		_	A'		A' A2	^	^
Mustard	B		Â	A	-	-	A	Â	A	A	Â	-	A	B	A	B	A	-	-	В	A	-	-	B	D	Â	A	B	-	A	D	D	-	Α	Â	A	-	<u>-</u>
Naphtha	D	A	1 A	A	В	-	A ¹	D	A	В	В	A	В	A ¹	A	A	D	D	A	D	D	D	D	D	Ā	A	A	A	Α	A	В	В	А	В	В	A	-	-
Naphthalene	D	A	1 D	A	В	В	C	D	A ¹	-	B	A	Α	D	A ²	D	D	D	Α	D	D	D	D	D	A	A	Α	B1	-	A	С	A	-	A	A	Α	Α	-
Natural Gas Nickel Chloride	B	B	-		-	B	A	Δ1		Δ2	A	Δ	A	A	Δ	Α Δ1	Δ1	Δ	Δ		A	D	A	A B	A	A	A	A	– D	A B1	– D	A	_	B		Δ	Δ	_
Nickel Nitrate	A	1-	A2	A	- 1	B	A	A ²	A ¹	D	A ²	-	A ²	Ā	A ²	A1	A ²	D	A	A ¹	A ²	- 1	-	A ²	A ²	B	B ²	D	-	A ²	-	C	-	B ²	-	-	Â	A
Nickel Sulfate	В	A	A	A	-	B	A	A ¹	A ¹	Α	A	Α	Α	Α	A	A ¹	A ¹	Α	Α	В	A	-	Α	Α	A	в	B1	D	D	В	С	D	-	В	в	Α	Α	-
Nitrating Acid (<1% Acid)	-	-	-	-	-	-	-	-	-	-	C	C	A	D	-	-	-	-	-	C	A	-	-	D	-	C	A	D	-	-	D	-	-	A	-	-	-	-
Nitrauny Acia (<13% E2304)	-	1 -				<u> </u>			-	-	U	U I	А	U	-	-	-	-	-	<u> </u>	А	-	-	U	- 1	U I	U.	<u> </u>			ען	A	_	А	А	-	-	_
Explanation of footnotes: 1.	Satisfactor	y to	72°F (22°C	;)	2.	Satis	sfacto	ory to	120°	'F (48	°C)		3. S	atisf	acto	ry to !	90°F	(32°C	.)	4	. Sat	isfact	tory 1	to 200)°F (!	93°C)										

Explanation of footnotes:

1. Satisfactory to 72°F (22°C)

3. Satisfactory to 90°F (32°C) 4. Satisfactory to 200°F (93°C)

US Toll-free: 800-323-4340 Outside the US: 847-549-7600 www.coleparmer.com • . Canada 800-363-5900 · India 91-22-6139-4444 · UK 0500-345-300

202

TECHNICAL DATA

CHEMICAL RESISTANCE CHARTS

AWARNING

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- **A** No effect
- B Minor effect
- C Moderate effect
- D Severe effect; not recommended
- No data available

							P	lasti	CS							_				Elas	tome	rs								M	etals					No	nme	tals
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel®	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS (Ryton®)	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon*	Kel-F®	Natural rubber	Neoprene	Santoprene [®]	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C [®]	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Nitrating Acid (>15% H2SO4) Nitrating Acid (<15% HNO ₃) Nitric Acid (5 to10%) Nitric Acid (20%) Nitric Acid (50%)	- - B B C	D - D D D	- - A A ² B ¹	D - A ¹ B ¹ D	- - C D	– – A B	– B C B ¹	- A B ² B ²	– – D D	– – A B ¹	C C A A ² B	D C B ¹ C C	A A A A	D D A ¹ A ¹ B ¹	- Α ¹ Α	D D D	A ¹ – A ¹ A ¹	- - B D	- - A A ¹		A A B D	- D D D	- C D D	D D B B B	– – A A	С С А А Д ²	C D A A	D D A D D	- - D D D	- - Δ1 Δ1	D D D D		– – D D	Α Α Α ¹ Α ¹	С С А ¹ А ¹	– – A D	– – A A	- - - C
Nitric Acid (Concentrated) Nitrobenzene Nitrogen Fertilizer	D D -	D C -	D D -	D C ¹ -	D D -	D D -	C1 C ¹	B ¹ D	D B ¹	C ¹ D	D B ¹	C A ² -	A A A	B ¹ D	A ¹ A ¹ -	D D -	D B ¹ -	D D -	A ¹ A ¹	D D -	D D -	D -	D D -	D D -	A B -	A ¹ B -	A1 B -	D B -	D - -	A ² A -	D C -	D C -	D B -	B ¹ D	A ¹ A -	D B -	A - -	C - -
Nitromethane Nitrous Acid	D	A -	Ā	D	- -	D -	A -	D -	- Bi	D -	A B ²	A² -	A	A	B	- -	A A	-	B	C	D	_	D -	A	B	B	B	D	D	B	A	-	C	D	-	A2	-	-
Nitrous Uxide	- n	- D	-	- ^	- D	-	C	– D		-		-	A			- n	A	- n	-			-	- D	A	B	B	B	B			B	-	B	B	- D	C	-	-
Anise Bay	-	DDDD	-	AA	-	-	-	-		-	- -	-	-	-	- A	-	-	-	-	-		-	-	-	– A	- -	AAA	-	-	AAA	AAA	AA	-	- -	-	-	-	-
Castor Cinnamon Citric	A - D	A D A	C - -	A A A	B ¹ -	_ D _	– D A	- - A	A - A	– D A	A D A	-	AAA	A D B	A - A	B - D	B - B	A - -	-	A - -	A C D	-	A - -	A - D	A A A	A A A	AAA	A - A	A - B		A A D	A - D	A - -	_ _ _	A - -	-	A - -	A - -
Clove Coconut	- A	– A	- A ¹	A	-	-	– A	-	-	-	- A ¹	-	A	- A ¹	- A	A		- C	-	- D	C	-	– A	– A	A	A	A	B	-	-	A	- A	-	A	-	-	-	-
Cod Liver Corn Cottonseed	B	A	A' - A	A A A ¹	- A A ¹	-	A A	A A	A B	-	A' A ²	– – A		B B B ²		D		B	- - A		A C	-	A	B B	A B A	A A A	AAA	AAA	- - A	-	A C A	A	B	A A A	– – A	– – A	– – A	-
Creosote Crude Oil	Ā	D A	Ā	A A	D -	– D	C _	D D	D A	-	C A	Ā	A	C A	Ā	D	D D	D	A -	D D	C D	-	D -	-	A A	B A	B A	B A	– B	A C	C -	-	– B	B A	A A	A A	-	-
Diesel Fuel (20, 30, 40, 50) Fuel (1, 2, 3, 5A, 5B, 6) Ginger	_ D		-	Α ¹ Α ¹	A' A	-	A B	D A ¹	A A	- B	B B	A A –	A A	B A ²	Α B	A A		B D	A' A	D D	B D	-	D C	A A –	A B A	A A D	AA	A C ¹	- B	AA	AA	A A -	_ A	B A ¹	B B	A A –	-	-
Hydraulic Oil (Petro) Hydraulic Oil (Synthetic)	- -	B -	-	AA	-	-	C A	-	A ¹ A ¹	-	D D	D -	AA	A	A	A		A	-	D D	A	-	B B	A A	A A	A A A	AA	AA	A	AA	AA	A -	A A	A A	-	B B	-	-
Linseed Mineral	Ā	AA	C A	AA	B ¹ A	Ā	A B ¹	A ¹ A ¹	A ¹ A	- B	AA	B A	A	A ² B	A	A	DDDD	CB	Ā	DDD	DB	-	A C	A B	AA	A	AA	BA	B A	AA	AA	-	B B	B A	A A	A A	A A	A A
Orange Palm	- -	D	– –	AAA	_	А С –	C ¹	- -	- -	C1 -	A A -	-	- A	C1 A	A	A	- A	- -	-	-	C D	_	D –	- -	A A	A A	A	A A -	-	A	A	_ _	_ _ _	A A -	AAA	- -	- -	_
Peanut Peppermint Pine		A D		AA	-	– – 8	A - n	-	-	-	D - B	-	AA	A ¹	AA	AD		B -	-	D - D	BDD	-	A - D	A - D	A A	AA	AA	A D	-	AA	AA		A -	-	A - -	-	-	-
Rapeseed Rosin		A -	A -	A A	-	-	D B ²	-	– A ¹	-	D A ²	-	A	- C ¹	A	D	A -	D -	-	D -	B -	-	D -	-	A A	A A ¹	A A ¹	- B ¹	-	A B ¹	A A	A -	– B	Ā	A -	Ā	-	-
Sesame Seed Silicone	A	D A	A A	A	– A	Ā	- A	A1		-	A A		A	A A	A	A	A	- A	-	D	D	-	- C	A A B	A A	A A	A	A	-	A	A	A	Ā	Ā	A 	Ā	-	Ā
Sperm (whale) Tanning	Â -	D	Â -	A A	-	-		-		-	-	-	Â -	-	A	A	-	-	-	-	D	-		A -	A A	A	Â	-	-	A	Â	Â	-	-	Â		-	-
Transformer Turbine	- -	A	A	B A	-	- -	C ¹ C	- -	A ¹ A	-	B B1 B1	- -	A	B A ¹	A	B	D A B	– D	- - B	D	BD	-	B D	– A	A A B	AA	A	A	– –	- A B1	A	Ā	AA	- - ^2	– A	A 	-	-
Oleum 25% Oleum 100%	- D	D		D	Ĉ	-	D	- A ¹	D	-	D	A ¹	Â	D		D		D	A	D	D	-	D	A C	A	B ²	B	B	-	B	D	-	-	A	D	D	-	-
Oxalic Acid (cold) Ozone	A B ¹	B C	A	A A ¹	D C	A C ²	A ² C ¹	А ¹ А ¹	B ² B	– В1	A ² C	A _	A ¹	B B	B	D	A	B	D	B D	D C	A D	B A	C A	A A	B B	A	A B	D _	B ² B	A _	C _	B A	B _	A _	A _	A _	-
Palmitic Acid Paraffin	A A	A A	A ¹ A	A A	A _	– В	– B	– A	A A ¹	– A1	B ¹ A ¹	-	A ² A	B ¹ B	A ² A	A B	2 B ¹ D	D -	-	B ¹ B	D B	A _	D -	D D	A ¹ B	B ¹ A	A ¹ A	B A	D A	A A	– A	-	B B	B B	– A	A ² A	– A	-
Pentane Perchloric Acid		B C	- A ¹	A -		– D	D B	-	A ¹ D	A -	D C		A	A C	A	A D	D B	B -	– B	D -	B A	B D	D D	A -	A A	A C	A C	A D		A B	C -	-	– D	A B	– D	A A	- -	-
Perchloroethylene Petrolatum	D -	B	C1 -	D	C -	D -	DB	D _	C ¹ D	D —	D	A -	A C	C ¹ B	A	C A	A	D	A -	D C	D A	D 	D	D B	A	B A	A ¹ A	C -	-	B	D	A -	B _	B A	A -	A	A -	-
Petroleum Phenol (10%)	D	B	A ²	A ² C	B -	D	B	D	D	B1	B1 B1	A	A ²	- C ¹	A	D	B	D	B	DA	D	D	D	B	A ²	B	B	A	-	B	C C	D	B	B	B	A ² A	Ā	-
Phosphoric Acid (<40%)	B	D	A	A	ט -	A	D A P1	A	D B1 p1	A	В А ²	A	A	B	B	D	B	B	A	B	B	A	U C	A	AA	D	C B	A C	D	B	D	D	D	A A ²	A C	A A P	AA	-
Phosphoric Acid (>40%) Phosphoric Acid (crude) Phosphoric Acid (moltan)			A -	В	-	B	B ¹	A	B1	A	B ²	A	A	B ²	A	D	B	B	A	D	D	- -	D	D	A	D	B		-	В		D	D		C	A	A -	-
Phosphoric Acid Anhydride Phosphorus	-	DB	- B1	-	-	A	– B	-	-	D	A	D	_ Δ2	Δ1	D	D	-	-	-	-	A	-	-	- B1		_ Δ2	- A ²	CB	-	_ Δ2	A	-	- B	- Δ2	D	– D	-	-

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2. Satisf

2. Satisfactory to 120°F (48°C) 3.

3. Satisfactory to 90°F (32°C)

4. Satisfactory to 200°F (93°C)

CHEMICAL RESISTANCE CHARTS

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

COLE-PAMER'S CHEMICAL

COMPATIBILITY DATABASE APP Chemical compatibility ratings where and when you need it—FREE!

Go to <u>ColeParmer.com/chemchart</u> to download iPhone App. Scan the QR code at right with your mobile device to get to our chemical compatibility database.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- A No effect
- B Minor effect
- C Moderate effect
- D Severe effect; not recommended
- No data available

							r	lasti	CS											last	omer	s								IVIE	tais					INO	nmet	ais
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel [®]	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon®	Kel-F®	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C [®]	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Phosphorus Trichloride	D	D	D	A ¹	-	Α	В	-	-	C	-	Α	A ²	D	A ²	D	A ¹	D	A ²	D	D	-	-	C	A ¹	A ¹	A ²	D	-	-	-	-	D	A ²	A	A	-	-
Photographic Developer	в		A		- -	_	A	A 1		A2	A A2	- ^2	A A2	A	- D2	A	B A1	A 	- ^2	A	A p1	-	B	A A2	A D1	A	A	-	-	A A2	D	D	ש	B D2	A A1	A A2	A	A
Photographic Solutions Phthalia Acid	- B			D-	Р	R	A R2	A'	A' R1	A'	A ²	A ²	A2 A2	А	Δ ²	D		A' A2	A ²		P.	-	A B1		A1	D B2	^	- R2	-	R2	_	-		B2	A'	A ²	-	-
Phthalic Anhydride	B	C C			_	_	-	_	- D.	Δ1	ñ	_	Δ	D	Δ	D			_	Δ	Δ	_	_	n l		Δ	A	Δ			B	_	C C		_			
Picric Acid	Ā	Ă	D	A	-	D	A	_	C1	D	B1	Α	Â	D	A ¹	C	B	в	A	D	Â	D	D	Ă	Â	B	В	ĉ	_	B	D	Α	Ď	B	A	Â	-	_
Plating Solutions																																					_	
Antimony Plating 130°F	-	A	A	В	-	-	-	Α	D	-	A	-	A	Α	Α	Α	-	-	-	-	A	-	-	-	A	Α	Α	А	-	Α	Α	Α	-	A	A	-	-	-
Arsenic Plating 110°F	-	A	A	В	-	-	-	-	Α	-	A	-	Α	Α	Α	Α	-	-	-	-	A	-	-	-	Α	Α	Α	А	-	Α	Α	Α	-	Α	Α	-	-	-
Brass Plating:			Ι.												-																							
Regular Brass Bath 100°F	-	A	A	B	-	-	В	A	A	-	A	-	A	A	В	A	-	-	-	-	A	-	-	-	A	A	A	A	-	А	A	A	-	A	A	A	-	-
High-Speed Brass Bath 110°F	-	A	A	в	-	-	в	A	A	-	A	-	A	A	В	A	-	-	-	-	A	-	-	-	A	-	A	A	-	-	A	A	-	A	A	A	-	-
Cu-Cd Bronze Bath B T	_	Δ	Δ	в	_	_	_	Δ	Δ	_	Δ	_	Δ	Δ	Δ	Δ	Δ	_	_	_	Δ	_	_	_	Δ	Δ	Δ	Δ	_	_	Δ	Δ	_	Δ	Δ	_	_	_
Cu-Sn Bronze Bath 160°F	_	B		l c	_	_	_	Â	A	_	Â	_	Â	D	A	A	Â	_	_	_	Â	_	_	_	A	A	A	A	_	_	A	Â	_	Â	Ď	_	_	_
Cu-Zn Bronze Bath 100°F	_	Ā	Ā	B	-	-	-	A	A	_	A	-	A	Ā	A	A	_	-	-	-	A	-	-	-	A	A	A	A	-	_	A	A	-	A	Ā	-	-	-
Cadmium Plating:																																						
Cyanide Bath 90°F	-	A	A	В	-	-	-	Α	Α	-	Α	-	Α	Α	Α	Α	-	-	-	-	A	-	-	-	Α	-	Α	Α	-	-	Α	Α	-	Α	Α	-	-	-
Fluoborate Bath 100°F	-	С	A	В	-	-	-	Α	D	-	Α	-	Α	Α	Α	В	-	-	-	-	С	-	-	-	Α	Α	Α	Α	-	-	Α	D	-	D	D	-	_	_
Chromium Plating:															~																				_			
Barrei Chromo Bath 115%	-				-	-	-	D	D	_	A	-	Å	A	с С	U C	-	-	-	-		-	-	-		-	C U	A	-	-	C		-	D I		-	-	-
Chromic-Sulfuric Bath 130°F	_				_	_	_	n	n	_		_	Δ	Δ	c	n	_	_					_		c	_	c	Δ		_	c	Δ		n	Δ	_	_	_
Fluoride Bath 130°F	_		Â	l č	_	_	_	D	D	_	Â	_	Â	Â	č	D	_	_	_	_	D	_	_	_	č	_	Ď	A	_	_	Ď	ĉ	_	D	ĉ	_	-	_
Fluosilicate Bath 95°F	_	D	A	Ċ	-	-	-	D	D	_	D	-	A	A	Ĉ	D	-	_	-	-	D	-	-	-	Ĉ	-	C	A	-	_	C	Ĉ	-	D	Ċ	-	-	-
Copper Plating (Cyanide):																																						
Copper Strike Bath 120°F	-	A	A	В	-	-	-	Α	Α	-	A	-	A	Α	В	Α	-	-	-	-	A	-	-	-	Α	-	Α	-	-	-	-	A	-	A	-	-	-	-
High-Speed Bath 180°F	-	B			-	-	-	A	A	-	A	-	A	D	A	A	-	-	-	-	B	-	-	-	A	-	A	A	-	-	-	A	-	A	D	-	-	-
Kochelle Salt Bath 150°F	-	В		U	-	-	-	A	A	-	A	-	A	U	A	A	-	-	-	-	В	-	-	-	A	-	A	A	-	-	-	A	-	A	U	-	-	-
Copper Flaung (Acia): Copper Fluoborate Bath 120°F	_	ſ		l n	_	_		^	п	_	^	_	^	۸	۸	в	_	_	_	_	r	_	_	_	^	^	п	۸	_	_	п	п		п	п	_	_	
Copper Sulfate Bath R.T.	_	Ă	Â	D	_	_	_	Â	D	_	Â	_	Â	Â	Â	Ă	_	_	_	_	Ă	_	_	_	Â	2	D	Â	_	_	D	Ă	_	D	Ă	_	_	
Copper Plating (Misc):																			1																			
Copper Pyrophosphate	-	A	A	В	-	-	-	А	Α	-	Α	-	Α	Α	Α	Α	-	-	-	-	A	-	-	-	Α	-	Α	А	-	-	Α	Α	-	Α	Α	-	-	-
Copper (Electroless)	-	D	A	В	-	-	-	Α	A	-	Α	-	A	Α	Α	D	-	-	-	-	D	-	-	D	A	-	-	Α	-	-	-	-	-	-	Α	-	-	-
Gold Plating:								^	^				^	۸		^											c											
Cvanide 150°F	_	_			_	_	_	Δ	Δ	_	A	_	Â	D	_	A	_	_			Â	_	_	_	Å	_	Δ	_		_	_	_	_	Â	Â	_		
Neutral 75°F	_	_	Ā	Ā	_	_	_	A	A	_	A	_	A	Ā	_	A	_	_	_	_	A	_	_	_	A	-	C	_	-	_	_	_	_	A	A	_	-	_
Indium Sulfamate Plating R.T.	_	_	A	A			-	Α	D	_	Α	-	Α	Α	-	Α	-	_	_	-	A	_	_	_	Α	-	С	-	_	_	-	_	-	Α	Α	_	A	_
Iron Plating:																																						
Ferrous Am Sulfate Bath 150°F	-	-		D	-	-	-	A	D	-	A	-	A	D	-	A	-	-	-	-	B	-	-	-	A	-	C	-	-	-	-	-	-	A	A	-	-	-
Ferrous Unioride Bath 190°F	-	-			-	-	-	A	D	-		-	A	D	-	в	-	-	-	-	D	-	-	-	A	-	U C	-	-	-	-	-	-	D L	A	-	-	-
Fundorate Bath 1/15°F	_					_		Å	n	_				D		B					r I						D D	_				_		R	ĥ			_
Sulfamate 140°F	_	_	Ā	Ā	_	_	_	Â	D	_	Â		Â	Δ	_	Δ	_			_	Ă	_	_	_	Â	_	D	_			_	_	_	B	Ā		_	_
Sulfate-Chloride Bath 160°F	-	-	D	D	-	-	-	A	D	_	A	-	A	D	_	В	-	-	-	-	C	-	-	-	Α	-	D	_	-	_	_	-	-	D	Α	-	-	-
Lead Fluoborate Plating	-	-	Α	Α	-	-	-	Α	D	-	Α	-	Α	Α	-	В	-	-	-	-	Α	-	-	-	Α	-	С	-	-	-	١	-	-	Α	D	-	A	-
Nickel Plating:								-	-		_			-		-					_				.													
Electroless 200°F	-	-		B	-	-	-	D	D	-	D	-	A	D	-	D	-	-	-	-	D	-	-	-	A	-	-	-	-	-	-	-	-	_	-	-	-	-
Fluodorate 100-170°F High Chloride 120 160°F	-	-			-	-	-	A	D	-	A	-	A	A	-	A B	-	-	-	-	A	-	-	-	A	-	с С	-	-	-	-	-	-	A		-	-	-
Sulfamate 100–140°F	_	_			_	_		Δ	Δ	_	2	_	2	Δ	_	Δ			_		Δ	_	_		Ω	_	č	_		_	_	_		2	2	_	_	
Watts Type 115–160°F	_	-	D	D	-	_	-	A	A	_	A	-	A	D	_	A	-	_	-	-	A	-	-	-	A	-	č	_	-	_	_	_	-	A	A	-	-	_
Rhodium Plating 120°F	-	-	Α	Α	-	-	-	Α	D	-	Α	-	Α	Α	I	Α	Α	-	-	-	В	-	-	-	Α	-	D	-	-	-	I	-	-	D	D	-	A	-
Silver Plating 80–120°F	-	-	A	A	-	-	-	Α	Α	-	Α	-	Α	Α	-	Α	Α	-	-	-	A	-	-	-	Α	-	Α	-	-	-	-	-	-	Α	Α	-	-	-
Tin-Fluoborate Plating 100°F	-	-	A	A	-	-	-	A	D	-	A	-	A	A	-	B	-	-	-	-	C	-	-	-	A	-	C	-	-	-	-	-	-	A	D	-	-	-
7 Jin-Lead Plating 100°F	-	-	A	A	-	-	-	A	D	-	A	-	A	A	-	В	-	-	-	-	U	-	-	-	A	-	U	-	-	-	-	-	-	A	U	-	-	-
Acid Chloride 140°F	_	_	Δ	Δ	_	_	_	Δ	р	_	Δ	_	Δ	Δ	_	Δ	_	_	_	_	Δ	_	_	_	Δ	_	р	_	_	_	_	_	_	п	Δ	_	_	_
Acid Fluoborate Bath R.T.	_	-	A	A	- 1	_	-	A	D	_	A	-	A	A	_	B	_	-	_	-	c	-	-	-	A	-	C	_	-	_	-	_	-	Ā	D	_	-	_
Acid Sulfate Bath 150°F	-	-	D	D	-	-	-	А	D	-	Α	-	Α	D	-	Α	-	-	-	-	В	-	-	-	Α	-	С	-	-	-	-	-	-	Α	А	-	-	-
Alkaline Cyanide Bath R.T.	-	-	Α	Α	-	-	-	Α	Α	-	Α	-	Α	Α	-	Α	-	-	-	-	Α	-	-	-	Α	-	Α	-	-	-	-	-	-	Α	Α	-	-	-
Potash (Potassium Carbonate)	A	В	A	A	D	B	A ¹	A	A	-	A	-	-	A	Α	A	A ¹	-	-	A	A	-	_	A	A	B	В	D	-	В	В	C	B	B	A	A	D	-
Potassium Bicarbonate	A 1	_	A	A	-	В	A	A'] 1	A' 1		A	A	A	A	В	A	A A1	-	A	A	A	-	A' 1	A	A	R	В	U C1	-	В	В	A	В	R	A	A	A	A
Potassium Chlorate	Δ.	R				B	Δ1	Δ1	А. С1	Δ1	Δ	Δ	Δ	A	A	Α Δ1	Δ1		Α Δ2		Δ	_	R.	B	Δ	B1	B	B.		B1	B	C	B1	B	Δ	Δ2	B	A _
Potassium Chloride	A	Ā	A	A	В	Ā	A ¹	A ¹	Å1	A	A	A	A	A	A	A1	A ¹	А	A	Α	A	_	Ā	Ă	A	B1	A1	D	D	B	Ă	Ă	B	Ā	A	A	_	
	_	_																			_																	

Explanation of footnotes: 1. Sat

3. Satisfactory to 90°F (32°C)

TECHNICAL DATA

CHEMICAL RESISTANCE CHARTS

AWARNING

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

RATINGS

Chemical Behavior

- A No effect
- **B** Minor effect
- **C** Moderate effect
- D Severe effect;
- not recommended — No data available

		Plastics												Elastomers										Metals											Nonmetal			
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel [®]	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon®	Kel-F [®]	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C [®]	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Potassium Chromate Potassium Cyanide Solutions	- A	C	AA	CA	B	- - D	AA	A ² A ¹	B A ¹	- - 41	A A	Ā	A ¹ A	A A	B A	A ¹ A ¹	A ² A ¹	Ā	Ā	B A	A B	-	Ā	B A	A A	B1 B1	B1 B1	B ¹ D	D	B ¹ D	BB	A B	D	A B	A	AA	B D B	-
Potassium Ferricyanide	B.	B1		Δ1	с _	D	Δ2	Δ2	B1			_	Δ2	A	Δ2	D.	Δ.	Δ1	Δ1	B	Δ1	_		B	Â	B1	B1	B2	_	B2	B		B	B2	Δ2	Δ2	B	
Potassium Ferrocyanide	-	-	B	A	-	-	A ¹	A	B1	-	A	-	A	A	A	D	A	-	A	A	A	-	-	B	A	В	B	B1	-	B1	B	C	B	B	A	A	-	A
Potassium Hydroxide (Caustic Potash)	Α	A	A	Α	D	Α	A	A1	C1	D	A	A	Α	A ¹	A	B1	A ²	A	в	B	В	В	С	В	В	B	A1	D	D	D	В	B2	В	B1	D	C	D	А
Potassium Hypochlorite	-	-	-	-	-	-		-	B1	-	-	A	A ²	B1	A ¹	A ¹	A ¹	A1	-	Ci	B ²	-	-	B1	-		B		-		B	A	D	B ²	A ¹	-	D	-
Potassium lidude	B			Δ	B	B		Δ1	B1	Δ1			Δ				A	Α-	_			_	Δ			B	B	B	B	B1	B			B1			B	1
Potassium Oxalate	-	-	-	-	-	-	-	-	-	-	-	-	A ²	-	-	-	-	-	-	-	-	-	-	-	-	B	B1	B1	-	A ¹	B	A	B	A ¹	A ¹	A ¹	A	-
Potassium Permanganate	B1	A	A1	Α	D	Α	A	Α	D	A ²	A ¹	A	Α	A1	A	C	Α	-	-	A ¹	Α	-	-	В	A	B1	В	B1	-	A1	В	A	Α	A1	A	B1	А	-
Potassium Sulfate	В	В	A	Α	В	В	A ²	Α	A1	A ¹	A	A	Α	A ²	A	A ²	A ¹	Α	A ¹	A	A	-	Α	A	A ²	B1	A	С	D	A ¹	A	A	В	B1	A	Α	Α	Α
Potassium Sulfide	В	-	A ²	-	_	-	A ²	A	A	-	A	A	A	A ²	A	A	A	В	A	B	A	-	A	-	A	B	B	D	-		A	B	D	-	A	A	Α	-
Pronvlene	B			A _		<u> </u>	<u> </u>	A.	A.	-	- A	-	Δ2	R1		A D	D	– D		n		-	D	Δ	Δ1	A B1	Δ1	Δ	- A	A-				A _	_	Δ2	-	-
Propylene Glycol	В	В	C1	В	_	Α	B2	_	Α	B1	A ²	_	A	C1	-	Ă	Ă	Ă	-	Ă	c	_	Ă	A	Â	B	B	B	-	A	A	A	A	В	A	-	А	А
Pyridine	-	В	D	Α	С	D	B1	В	C1	D	A ²	A	A	D	D	D	В	D	A1	D	D	A	D	D	D	A	A	В	В	В	A	A	В	В	В	Α	Α	- 1
Pyrogallic Acid	-	D	Α	Α	-	-	-	-	-	-	A	-	A	Α	A	-	В	-	Α	-	Α	D	-	-	A	B ²	В	В	-	A	В	D	В	В	Α	A	-	-
Resorcinal	A	-	-	-	D	-	B ²	-	D	B1	A2	-	A ²	C 01	-	-	B1	-	-	-	D	-	-	С	A1	-	-	-	-	-	-	-	-	-	-	A ²	-	-
Rosins	_	I N		A	_	в	B'	^	A	_	A ²		A		_	A ²	_	N N	A	_	A	_	A		Å	A'		В'	_	I N	В		в	_		A	_	I E I
Rust Inhibitors	_	Â	<u> </u>	A	_		_	_	_	_	Â			_	_	Â	_	-	_	_	ĉ	_	_	_	Â	Â	Â	_	_	Â	В	C C	_	_	_	_	_	Ξ.
Salad Dressings	-	A	-	Α	-	-	-	Α	Α	-	A	-	-	-	-	A	-	-	-	-	-	-	-	-	A	A	A	В	-	-	В	D	-	-	-	-	-	- 1
Salicylic Acid	Α	D	-	-	-	-	B ²	-	A1	A1	A1	-	A ²	B1	A	В	Α	Α	A ¹	Α	-	-	-	B1	A1	B ²	B ²	B ²	-	A	B	Α	Α	A ²	A1	A ²	-	_
Salt Brine (NaCl saturated)	-	-	A ²	A	A	A	A A2	A	A A2	A A	A	A	A2	A A2	A	A A2	A A2	A ²	_	A	A ²	A	A ¹	-	A ²	BI		BI	-	B ²	B	D	B	A ²	A ²	A ²	-	-
Shellac (Bleached)	_		A		A	A		A'	A ²	A ²		A		A-	A	A ²	A2 A2	A	A		B2	A	A'						B					A			_	Ē
Shellac (Orange)	_	Â	_	Â	_	_	Â1	_	Â1	_	Â	_	Â	_	_	Â	Â	_	_	δl	D	_	_	_	Â	Â	Â	Â	B	Â	Â	Â	Â	_	_	Â	_	-
Silicone	D	Α	Α	Α	Α	-	-	A1	A1	A ²	Α	A1	Α	Α	Α	Α	Α	Α	-	С	A	-	С	-	A	Α	A	Α	-	-	A	Α	Α	_	_	Α	_	
Silver Bromide	-	C	-	A	-	-	A	Α	-	-	-	-	Α	-	-	-	-	-	A	-	-	-	-	-	-	D	D	D	-	D	A	D	-	A	-	-	-	-
Silver Nitrate	B	A	A	A	_	A	A	A	A	A ²	A	A	A	A	A	B	A	A	A	A	A	_	A	B	A	B		D	- -	B	C	C	-	A	A	A	_	-
Soda Ash (see Sodium Carbonate)	R			A C	R		B	A' A	A' R	A'				Å	A'	A A1	A A2	A	_		л л1	A	Å	A		A			D			R	A	A	A	A	A	A
Sodium Acetate	B	B	Â	Ă	-	Â	A	A1	B1	A1	Â	Â	Â	B1	Â	B	Â	_	А	Â	B	_	D	A	δl	B	B1	В	В	B	Â	B	А	Α	A	Α	Α	-
Sodium Aluminate	-	В	-	Α	-	-	-	Α	A1	-	-	A	Α	-	-	Α	Α	Α	-	В	Α	-	-	-	A	Α	Α	-	-	A	В	A	- 1	В	Α	Α	-	-
Sodium Benzoate	Α	-	A ²	A ²	-	В	A ²	-	B1	A ²	A ²	-	A ²	B1	A ²	В	A	В	-	A	A ¹	-	-	B1	A1	-	-	A1	-	A	-	-	-	A1	A1	A ²	-	-
Sodium Bicarbonate	A	A	A2	A	-	A	A ²	A	A	A ²	A	A	A	A ²	A	A ¹	A ²	A	A	A	A	-	A	B	A	A	A	D	D	A	A	C	B	B1	A ²	A	A	Α
Sodium Bisulfite	A	I C	A ²	A	L B	B	A ²	A' A1	C1		A	A	A	A2 A2	A	Δ2 Λ2	A2 A2	A	A2	A	A	_	A	B	Å	D B1	I B1		U	R1			B	B ²		A	A	I E
Sodium Borate (Borax)	Â	-	A ²	Â	B	B	A ²	A ¹	A ¹	A1	A ²	Â	Â	A ²	A	A ¹	A	A	-	Â	A	-	A	-	Â	B ²	B	C	-	A	A	-	B	A	B	A	A	A
Sodium Bromide	В	A	A ²	Α	-	-	A ²	A ²	B1	-	-	-	A ²	B ²	A ²	-	Α	В	A1	A1	A1	-	-	B ²	A1	C	С	D	-	A	В	C	D	-	A1	A ²	-	- 1
Sodium Carbonate	В	A ¹	A ²	C1	-	Α	B ²	Α	B1	A ²	A	A	Α	A ²	Α	Α	A ²	Α	Α	A	Α	-	Α	В	A	Α	A	D	В	A ²	В	В	Α	A	A ¹	Α	Α	А
Sodium Chlorate	A	A	A ¹	A	-	-	B ²	A ¹	D	A ¹	A	A	A	A1	A	B	A	A	-	A	A	_	C	B	A	A	B1		-	B1	B	-	B	B1	A	C	A	-
Sodium Chromate	A		A ²	A	A	A	A ²	A	A' C	A2	A	A	A	A ²	A	A	A	A	A	A B	A	A	A	в	A	B1	B	L B	U	B	B		B	A	A	A	A	A
Sodium Cvanide	Ā	A	A2	A	В	В	A2	A1	Δ1	_	Ā	Â	Â	Δ2	Â	Â	A2	Ă	Â	A	Δ1	_	A	A		Δ1	B1		D		A	Â		A	Ā	A	A	A
Sodium Ferrocyanide	-	A	A	Α	-	-	A	Α	-	-	A	-	Α	Α	A	A	Α	В	-	в	A	-	-	A	A	в	В	Α	-	-	-	-	D	Α	-	Α	Α	-
Sodium Fluoride	Α	-	A ²	Α	-	-	A ²	A ²	В	-	A	-	A1	A ²	A	A1	Α	В	-	-	A	-	-	D	A	D	D	В	-	A	C	C	D	Α	A	A	Α	-
Sodium Hydrosulfite	-	-	C	-	-	-	-	-	A	-	-	-	A	C	-	C	B	B	-	C	B B ²	-	C	A	A	-	- D2	A	-	-	C A2	-	-	A	-	-	-	-
Sodium Hydroxide (20%) Sodium Hydroxide (50%)				A ²	B		B	A	A		A	A	A	A	A n	A 1	B1	A	B		B2	A	A ²	n'	B1	B	B1		B	I C	R2		R A	L C	A' B	A ²	A	ΙΞ.
Sodium Hydroxide (80%)	Â	D	Â	Â1	_	č	-	Â	ĉ	D	Â	Â	A1	Â	D	ρ	B1	A2	B	A1	B1	ĉ	Â1	č	B1	č	B1	D	D	Ċ	D	D	D	č	D	A ²	Â	С
Sodium Hypochlorite (100%)	-	D	C2	D	D	C	B2	Α	D	-	в	A	Α	В	A	D	B1	В	A	C	С	D	В	-	A1	D	D	D	D	C	D	D	-	В	C	С	Α	A
Sodium Hypochlorite (<20%)	В	D	Α	С	Α	Α	Α	Α	D	С	Α	Α	Α	Α	Α	В	В	Α	Α	С	С	Α	В	С	A1	С	С	D	D	C	D	D	-	Α	С	В	Α	Α
Sodium Hyposulfate	-	-	-	C	-	-	-	-	-	-	-	-	A	-	-	-	-	-	-	C	C	-	-	-	-	A	A	D	-	-	D	D	-	-	-	-	-	-
Sodium Metaphosphate	-	I B	A'	A	-	в	A	-	A	-	A	-	A	A	A	A	A 1	В	-	A	B	-	А	-	A	A	A		U	A	A		B	_	-	A	-	-
Sodium Nitrate	_				_	B	Δ2	Δ1	Δ1	_	Â	Δ	A	Δ2	Δ	Δ1	Δ.	Δ	Δ	B	B	_	D	B	Â	B1	B1	B	_	B		B		B	Δ	c –	Δ	Δ
Sodium Perborate	-	B	A ¹	В	-	-	A1	A	B1	-	A	_	A	A ²	_	В	A	В	A	B	B	-	В	_	A	В	B	C	D	B	D	C	B	В	-	c	-	-
Sodium Peroxide	-	D	A ²	С	-	В	A	-	A1	A ²	В	-	Α	B ²	Α	В	Α	В	Α	В	B1	-	D	-	Α	Α	Α	С	D	Α	D	C	В	В	-	A	-	-
Sodium Polyphosphate	-	В	A1	Α	-	В	A	A ¹	A1	-	Α	-	Α	A1	Α	Α	Α	В	А	C	В	-	D	-	Α	В	В	D	D	В	C	D	Α	Α	Α	Α	-	-
Sodium Silicate	-		A2	A	-	A	A2	A1	A ¹	-	A	A	A	A2	A	A	A	A	A	A	A	-	A	B	A	A	B	A	D	B	A	B	B	B	A	A	A	-
Sodium Sulfide		B		A		B		A	Α Δ1	A ²		A	A	Α ² Δ2	A	A	Α Δ2	A	Α Δ1	B	A	_	A	B	Α Δ2	B	D B'		D D	B1		B	D D	B1	A	A	A	
Sodium Sulfite	-	-	A ²	A	-	B	B1	A	D	-	A ²	-	A	A ²	A	A	A	A	A	B	A	-	A	A	A ²	В	A	C1	D	B	C	A ¹	D	B	A	A	-	-
Sodium Tetraborate	-	В	A	A	-	B	Å ²	A	Α	-	-	-	A	A ²	-	A	A	A	-	A	В	-	A	-	A	A ²	A	Ċ	-	Ā	-	-	B	-	-	A	-	-
Sodium Thiosulfate (hypo)	-	C1	A ²	Α	-	-	A ¹	Α	В	D	A ²	Α	Α	A ²	Α	В	A ²	А	А	B	A ²	-	А	-	A	A ²	В	Α	D	A ²	D	С	D	A ²	Α	Α	-	-
Sorghum Sov Sauce	-	A	-	A	-	-	-	_	A	-	-	-	-	-	-	A	-	-	-	A	A	-	-	-	A	A	A	_	-	A		A	-	-	-	-	-	-
JUY JULE		I A		- A	1		1	A 1	- A I	- 1	- 1	- 1	- 1	- 1	- 1	~ 1		_	_			_		- 1	- H	~ 1	- A	- A		- A	· A				!			. –

Explanation of footnotes: 1. Satisf

1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C)

3. Satisfactory to 90°F (32°C)

CHEMICAL RESISTANCE CHARTS

The information in this chart has been supplied to Cole-Parmer by other reputable sources and is to be used **ONLY** as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals under the specific conditions of your application. Ratings of chemical behavior listed in this chart apply to a 48-hour exposure period; Cole-Parmer has no knowledge of possible effects beyond this period. Cole-Parmer does not warrant (neither expressed nor implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

CHEMICAL COMPATIBILITY DATABASE

To find the safest materials for your application, search this database by chemical, material, or compatibility level.

Scan the QR code at right with your mobile device to get to our chemical compatibility database.

A DANGER

Variations in chemical behavior due to factors such as temperature, pressure, and concentration can cause equipment to fail, even though it passed an initial test.

SERIOUS INJURY MAY RESULT.

Use suitable guards and/or personal protection when handling chemicals.

Ratings

Chemical Behavior

- A No effect
- **B** Minor effect**C** Moderate effect
- \mathbf{D} Severe effect;
- not recommended
- No data available

		Plastics											Elastomers										Metals										No	Nonmetals				
CHEMICAL	ABS plastic	Acetal	CPVC	Epoxy	Hytrel®	HDPE	LDPE	Noryl®	Nylon	Polycarbonate	Polypropylene	PPS	PTFE	PVC	PVDF	Nitrile (Buna N)	EPDM	Hypalon [®]	Kel-F®	Natural rubber	Neoprene	Santoprene®	Silicone	Tygon®	Viton®	304 stainless steel	316 stainless steel	Aluminum	Brass	Bronze	Carpenter 20	Cast iron	Copper	Hastelloy C [®]	Titanium	Carbon graphite	Ceramic Al ₂ 0 ₃	Ceramic magnet
Stannic Chloride	-	C	A2	A	-	-	A ²	A ¹	B1	A1	Α	Α	A	A ²	A	A	A	C1	Α	Α	C1	-	В	-	A	D	D	D	-	A	D	D	-	В	A	A	Α	-
Stannic Fluoborate	-	C	-	A	-	-	-	A	-	-	-	-	-	-	-	A	-	-	-	-	A	-	-	-	A	_	A	-	-	-	D	D	-	-	-	-	-	-
Stannous Chloride	-	-	A ²	A	C	-	B ²	A ²	CI	-	A	A	A	A	A	A	C	A	A	A	A	-	В	Α	A	C ²	A ²	D	-	A'	D	-	-	В	A	-	A	-
Starch	-	A		A	-	_	B	A ²	A'		A2	-	A	A P2	-		A	A	A	A	A D1	_	- D	-	A	A	A	A	-	-	A		-	-	-	A	А	А
Stearic Acid	- -	A	B ²	В	L L	A	B'	A	A ²	A' A2	A ²	-	A	B ²	A	В	B		-	-	B' C1	A	В	D	A	B	A	B	U	B				В	A	A	-	-
Stoddard Solveni	D					-	6	U	A A1		ι.	A	A		A				А	D		U	D	U	A	A		A	_	A		A			A	A	_	_
Sugar (Liquids)	B							A A2	A1		_			-					_	^			^	B		A A											_	Ξ.
Sulfate (Liquids)	-	ĥ	В	Â	_	Δ	Δ2	2	B1		Â	_	Â	в	Δ		ΙÂ	B	_	B	ĥ	_	B	_	Δ1	B	B	ĥ		B	l îi	C	ĥ	B		Â	_	_
Sulfur Chloride	-	D	C1	Ċ	-	-	C1	Α	A1	-	C1	_	A	C1	A1	D	D	_	Α	D	D	_	Č	D	A	D	D	D	D	B	D	D	B	Ā	D	D	_	
Sulfur Dioxide	D	В	A ²	A1	С	D	B1	Α	C1	-	A ¹	Α	Α	A1	Α	D	A ²	С	Α	-	В	-	В	Α	Α	D	A1	В	D	В	В	-	В	С	Α	Α	-	-
Sulfur Dioxide (dry)	-	В	A2	A1	C	Α	A1	Α	B1	A1	A1	Α	A	A ²	A	D	A2	-	Α	С	D	-	В	Α	A	D	A	В	D	B	A	A	A	В	A	A	-	-
Sulfur Hexafluoride	-	-	-	-	-	-	В	-	В	-	-	-	-	В	-	В	В	В	-	D	A	-	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur Trioxide	-	-	A	A	-	-	-	D	D	-	С	-	Α	Α	-	D	C2	D	-	С	D	-	В	Α	Α	А	C	Α	D	C	A	B	-	-	-	В	-	-
Sulfur Trioxide (dry)	-	D	A	A	-	-	<u>C1</u>	D	A1	-	D	-	A	A1	C1	D	<u>C1</u>	-	-	-	D	-	B	B	A	D	A	A	A	B	B	A	В	B	D	D	-	-
Sulfuric Acid (<10%)	B		A		A	A	A	A	C	A	A ²	A	A	A	A		A B2	A	A	A	B2	A	C	A	A	D	B	D	-	B		L C	-	BI		A	A	-
Sulfuric Acid (10-75%)	в	יין	A		-	A	A' C	A	D	B	A' C1	A A1	A	A	A	L B'	B ²	A	A		B	В	D	L D	A ²	D			-	B				В' D1		A' C1	A	_
Sulfuric Acid (75-100%)	_				B	B		Å	D		Λ2	A1		D						n		n	D	D	R.	r		B						Δ. Λ1			A	A
Sulfuric Acid (tota concentrated)	_	_			-	B		ĥ	D	р	ĥ	ĥ	Â	D	5		l n	Â	Â	D	n	n	D	D	Δ2	n				B	l G		_	ĥ			Δ	_
Sulfurous Acid	-	С	A ²	A	-	B	B1	A	D	-	A	A	A	A ²	Ā	B1	B	A	A	B	C	-	D	B	A	B1	B	B1	-	B	D	D	D	B	A	A	-	-
Sulfuryl Chloride	-	A	-	A	-	-	-	-	-	-	-	-	A	_	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-
Tallow	-	A	-	A	-	A	C	A	A1	-	A ²	-	A	-	-	A	A	C	-	-	В	-	-	-	A	А	A	A	-	-	-	-	-	-	-	A	-	-
Tannic Acid	-	В	A1	A	A	Α	B ²	A ²	C1	С	A	Α	A	A1	В	A	A	A	Α	Α	A	Α	С	С	A	B1	A	С	В	В	A	C	A	B1	A	A	Α	Α
Tanning Liquors	-	В	A1	A	-	-	A1	A ²	A ¹	-	A ¹	-	Α	A1	-	B1	В	В	-	С	A	-	В	В	Α	A ²	A ²	Α	-	A ²	A	-	-	В	A	Α	-	-
Tartaric Acid	-	B	A1	A	С	A	A1	A ¹	B ²	-	A	Α	A	A	B	A	B	A	A ²	A	A ²	A	A	В	A	C ²	C ²	B1	D	B1	A	C C	A	B	A	A	Α	А
Tetrachloroethane	-	A		A	-	-	-	D	U1 A1	-	U	-	A	U	A	טן	L D	ם ו	A	D	ש	ן ט	D	-	A	В	A	C	-	-	-	A	A	A	A	A	-	-
Tetrachioroethylene	-	A		-			B C1	D	A'	D	D C2	_	A	D					A A1	D	שו	_	D	-	A	^	A	-	-	_		A	A	_		A	_	_
Tin Salts	_				D	- U		_	A _	_	Δ		Δ	Δ	Δ.	Δ	B	Δ	A.	Δ	_	_	B	Δ	Δ	A _			_				_	C		A _	A _	_
Toluene (Toluol)	D	C1	D	B1	В	п	C1	D	Δ1	D	C1	Δ	Δ	D	Δ1	n	D	n	B2	D	D	D	D	D	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ
Tomato Juice	B	B	-	Ā	-	Ā	Å1	Ā	A ¹	A1	Ă	A	A	Ā	A	Ā	Ā	_	Ā	_	Ā	_	_	_	A	A	A	A	-	A	C C	-	-	-		A	_	-
Trichloroacetic Acid	-	-	-	D	-	С	A	_	С	D	Α	Α	A	В	В	-	В	-	Α	С	D	-	D	А	C	D	C	D	-	-	_	D	D	В	D	A	Α	-
Trichloroethane	-	A	-	A	-	D	-	D	C1	D	С	-	Α	С	Α	D	D	D	Α	D	D	D	D	D	Α	В	В	D	-	A	A	B	-	Α	A	Α	-	-
Trichloroethylene	D	D	D	C1	C	D	D	D	C1	-	C1	A1	A	D	В	D	D	D	Α	D	D	D	D	D	Α	В	В	D	-	В	A	C	A ¹	Α	A	Α	Α	Α
Trichloropropane	D	A	-	A	-	-	-	D	-	-	-	-	A ¹	-	-	D	-	-	Α	D	A	-	-	D	A	A	A	D	-	A	A	A	A	A	-	-	-	-
Tricresylphosphate	В			A	-	-	B	A	A ²	-	A	-	A	D			A	טן	_	В	U	-	U	D	A ²	В	I B	U	-	A ²	A	B	B	A	В	A	D	-
Trisodium Phosphato					_	_	_		A'	-		_	A					-	А		A	-	_	A		R			-	_		A		_	-	A	Б	_
Turnentine				R	1	R	n n	ĥ	B		n	Δ	Δ	n	Δ				Δ	n	n n	n	n	n		Δ		Δ					B	R	B	Δ	Δ	_
Urea	B	A	A	-	-	A	A	A	A	D	A	A	A	D	A	В	A	-	-	-	B	-	B	B	A	B	B	B	-	B	-	-	-	B	A	A	B	-
Uric Acid	-	_	-	-	-	_	В	_	A	_	_	_	A	Ā	_	-	-	-	_	_	Ā	Α	_	Ā	_	В	B	D	-	В	-	D	A	В	A	A	D	-
Urine	-	A	A	A	-	Α	A ²	A ²	В	-	Α	-	A1	Α	A	A1	A1	-	-	D	D	-	-	-	A1	Α	A	В	-	A	C	A	-	-	-	A	-	-
Varnish	-	A	-	A	-	В	A	D	Α	-	Α	-	Α	D	-	В	D	D	Α	D	D	-	D	D	Α	А	A	Α	Α	-	A	C	В	Α	-	Α	-	-
Vegetable Juice	В	A	-	A	-	-	-	Α	Α	-	-	-	A	-	-	A ²	A	-	-	-	-	-	В	A	Α	A	A	D	A	A	C	D	Α	-	-	-	Α	-
Vinegar	A	В	A	A	-	A	A	A	Α	AZ	A	A	A	B	B	B		A	Α	B	В	-	A	A	A	A	A		D	A	C	D	B	A	A	A	A	А
Vinyl Acetate	-	-	L D		-	U	A	-		-	Bi	-	A ²	D	A ²		B ₂	A2	-	D	ש	-	D	D		B D2			-	- A2	-	B	B		-	A2	В	-
Water Deionized		-			-	_	-	 2	A1	-	 2	_	A- A2	D ۸2	A2							_	_	۵2 م	A. 1	۵- ۸1		Δ· Λ2	_	A-	-			A- A2		A- A2	R	_
Water Acid Mine	B	Δ1			_		Δ2	A-	Δ.	- R2	Δ	Δ	Δ	R R	Δ		Δ.	A-	Δ.	B	C A	Δ	B	- A	Δ.	R.	R R			Δ	c –			Δ			Δ	_
Water, Distilled	B	B	A	A	-	A	A2	Α	A1	A2	A	A	A	A ²	A	A	A	-	A	A	Ă	A	С	В	A	A	A	A	A	A	D	D	B	A	A	A	-	-
Water, Fresh	Ā	A ²	A	A	Α	A	A ²	A	A ¹	A ²	A	A	A	В	A	A	A	-	A	A	A	A	B	В	A	A	A	В	D	A1	Ā	D	B	A	A	A	А	-
Water, Salt	-	Α	A	A	Α	Α	A ²	Α	A ²	A ²	А	Α	Α	В	Α	Α	A	-	Α	А	Α	Α	В	В	Α	В	В	В	D	A	D	D	В	Α	Α	Α	В	-
Weed Killers	-	A	-	A	-	-	-	-	Α	-	-	-	-	-	-	Α	-	-	-	-	С	-	Α	-	Α	А	A	D	-	-	C	-	-	-	-	-	В	-
Whey	-	Α	-	Α	-	-	-	-	-	-	-	-	Α	-	-	Α	-	-	-	-	-	-	-	-	Α	А	A	В	-	-	-	-	-	-	-	-	-	-
Whiskey and Wines	С	A	A ²	B	-	В	C	A ²	A1	A1	A	-	A	A ²	A	A	A	A	Α	Α	C	-	Α	С	A	A	A	C1	B	A	C	D	В	-	A	A	А	А
White Liquor (Pulp Mill)	-		A	A	-	-	A ²	A	A	-	A	-	A	A ²	A	A	-	-	-	-	A	-	Α	-	A	A	A	В	В	A	D	Ċ	-	A	-	Α	-	-
vvnite Water (Paper Mill)		B		A		- -		D	A ^2	-	A	_	_	A	-				_	- D	A	-	-	-	A	A	A		-	-	A	A	-	-	-	-	_	-
Ayrene Zine Chloride		A		A	D A		D A1	<u>ل</u> م	A4	D A2	D A	A	A	P	A				A	D		D	P	D	D A	D	P		A	P1	A	B	A	P	A A	A	A	-
Zinc Unonue Zinc Hydrosulfite	Δ			Δ	A	A _	A'	Δ.	A	A-	A _	Δ		D		Δ		A	A _	A _	A	D	D	A _	A	Δ	Δ	D	_		n		B	D	A'	A _	_	_
Zinc Sulfate	A	Ċ	A	A	-	A	A2	A1	A	A ²	А	A	A	A ²	A	A	A	A	Α	В	A	_	А	А	A	B1	A	D	B ²	В	C C	D	B1	A ²	A2	A	D	А

Explanation of footnotes:

1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C)

3. Satisfactory to 90°F (32°C)

